Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyler Stephenson is active.

Publication


Featured researches published by Tyler Stephenson.


Energy and Environmental Science | 2014

Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites

Tyler Stephenson; Zhi Li; Brian C. Olsen; David Mitlin

This is the first targeted review of the synthesis – microstructure – electrochemical performance relations of MoS2 – based anodes and cathodes for secondary lithium ion batteries (LIBs). Molybdenum disulfide is a highly promising material for LIBs that compensates for its intermediate insertion voltage (∼2 V vs. Li/Li+) with a high reversible capacity (up to 1290 mA h g−1) and an excellent rate capability (e.g. 554 mA h g−1 after 20 cycles at 50 C). Several themes emerge when surveying the scientific literature on the subject: first, we argue that there is excellent data to show that truly nanoscale structures, which often contain a nanodispersed carbon phase, consistently possess superior charge storage capacity and cycling performance. We provide several hypotheses regarding why the measured capacities in such architectures are well above the theoretical predictions of the known MoS2 intercalation and conversion reactions. Second, we highlight the growing microstructural and electrochemical evidence that the layered MoS2 structure does not survive past the initial lithiation cycle, and that subsequently the electrochemically active material is actually elemental sulfur. Third, we show that certain synthesis techniques are consistently demonstrated to be the most promising for battery applications, and describe these in detail. Fourth, we present our selection of synthesis methods that we believe to have a high potential for creating improved MoS2 LIB electrodes, but are yet to be tried.


Energy and Environmental Science | 2013

Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors

Zhi Li; Zhanwei Xu; Xuehai Tan; Huanlei Wang; Chris M. B. Holt; Tyler Stephenson; Brian C. Olsen; David Mitlin

In this work we demonstrate that biomass-derived proteins serve as an ideal precursor for synthesizing carbon materials for energy applications. The unique composition and structure of the carbons resulted in very promising electrochemical energy storage performance. We obtained a reversible lithium storage capacity of 1780 mA h g−1, which is among the highest ever reported for any carbon-based electrode. Tested as a supercapacitor, the carbons exhibited a capacitance of 390 F g−1, with an excellent cycle life (7% loss after 10 000 cycles). Such exquisite properties may be attributed to a unique combination of a high specific surface area, partial graphitization and very high bulk nitrogen content. It is a major challenge to derive carbons possessing all three attributes. By templating the structure of mesoporous cellular foam with egg white-derived proteins, we were able to obtain hierarchically mesoporous (pores centered at ∼4 nm and at 20–30 nm) partially graphitized carbons with a surface area of 805.7 m2 g−1 and a bulk N-content of 10.1 wt%. When the best performing sample was heated in Ar to eliminate most of the nitrogen, the Li storage capacity and the specific capacitance dropped to 716 mA h g−1 and 80 F g−1, respectively.


ACS Nano | 2013

Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.

Huanlei Wang; Zhanwei Xu; Alireza Kohandehghan; Zhi Li; Kai Cui; Xuehai Tan; Tyler Stephenson; Cecil K. King’ondu; Chris M. B. Holt; Brian C. Olsen; Jin Kwon Tak; Don Harfield; Anthony O. Anyia; David Mitlin

We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.


Nano Research | 2012

Graphene-Nickel Cobaltite Nanocomposite Asymmetrical Supercapacitor with Commercial Level Mass Loading

Huanlei Wang; Chris M. B. Holt; Zhi Li; Xuehai Tan; Babak Shalchi Amirkhiz; Zhanwei Xu; Brian C. Olsen; Tyler Stephenson; David Mitlin

AbstractA high performance asymmetric electrochemical supercapacitor with a mass loading of 10 mg·cm−2 on each planar electrode has been fabricated by using a graphene-nickel cobaltite nanocomposite (GNCC) as a positive electrode and commercial activated carbon (AC) as a negative electrode. Due to the rich number of faradaic reactions on the nickel cobaltite, the GNCC positive electrode shows significantly higher capacitance (618 F·g−1) than graphene-Co3O4 (340 F·g−1) and graphene-NiO (375 F·g−1) nanocomposites synthesized under identical conditions. More importantly, graphene greatly enhances the conductivity of nickel cobaltite and allows the positive electrode to charge/discharge at scan rates similar to commercial AC negative electrodes. This improves both the energy density and power density of the asymmetric cell. The asymmetric cell composed of 10 mg GNCC and 30 mg AC displayed an energy density in the range of 19.5 Wh·kg−1 with an operational voltage of 1.4 V. At high sweep rate, the system is capable of delivering an energy density of 7.6 Wh·kg−1 at a power density of about 5600 W·kg−1. Cycling results demonstrate that the capacitance of the cell increases to 116% of the original value after the first 1600 cycles due to a progressive activation of the electrode, and maintains 102% of the initial value after 10000 cycles.


Energy and Environmental Science | 2017

Exceptional energy and new insight with a sodium–selenium battery based on a carbon nanosheet cathode and a pseudographite anode

Jia Ding; Hui Zhou; Hanlei Zhang; Tyler Stephenson; Zhi Li; Dimitre Karpuzov; David Mitlin

We created a unique sodium ion battery (NIB, SIB) cathode based on selenium in cellulose-derived carbon nanosheets (CCNs), termed Se-CCN. The elastically compliant two-dimensional CCN host incorporates a high mass loading of amorphous Se (53 wt%), which is primarily impregnated into 1 cm3 g−1 nanopores. The results in facile sodiation kinetics due to short solid-state diffusion distances and a large charge transfer area of the nanosheets were established. The architecture also leads to an intrinsic resistance to polyselenide shuttle and to disintegration/coarsening. As a Na half-cell, the Se-CCN cathode delivers a reversible capacity of 613 mA h g−1 with 88% retention over 500 cycles. The exceptional stability is achieved by using a standard electrolyte (1 M NaClO4 EC-DMC) without secondary additives or high salt concentrations. The rate capability is also superb, achieving 300 mA h g−1 at 10C. Compared to recent state-of-the-art literature, the Se-CCN is the most cyclically stable and offers the highest rate performance. As a Se–Na battery, the system achieves 992 W h kg−1 at 68 W kg−1 and 384 W h kg−1 at 10144 W kg−1 (by active mass in a cathode). We are the first to fabricate and test a Se-based full NIB, which is based on Se-CCN coupled to a Na intercalating pseudographitic carbon (PGC) anode. It is demonstrated that the PGC anode increases its structural order in addition to dilating as a result of Na intercalation at voltages below 0.2 V vs. Na/Na+. The {110} Na reflections are distinctly absent from the XRD patterns of PGC sodiated down to 0.001 V, indicating that the Na metal pore filling is not significant for pseudographitic carbons. The battery delivers highly promising Ragone chart characteristics, for example yielding 203 and 50 W h kg−1 at 70 and 14000 W kg−1 (via total material mass in the anode and cathode).


Journal of Physical Chemistry Letters | 2012

Electrochemical Supercapacitor Electrodes from Sponge-like Graphene Nanoarchitectures with Ultrahigh Power Density

Zhanwei Xu; Zhi Li; Chris M. B. Holt; Xuehai Tan; Huanlei Wang; Babak Shalchi Amirkhiz; Tyler Stephenson; David Mitlin


Carbon | 2013

Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste

Huanlei Wang; Zhi Li; Jin Kwon Tak; Chris M. B. Holt; Xuehai Tan; Zhanwei Xu; Babak Shalchi Amirkhiz; Don Harfield; Anthony O. Anyia; Tyler Stephenson; David Mitlin


Nano Energy | 2015

High rate SnO2–Graphene Dual Aerogel anodes and their kinetics of lithiation and sodiation

Zhi Li; Jia Ding; Huanlei Wang; Kai Cui; Tyler Stephenson; Dimitre Karpuzov; David Mitlin


Electrochimica Acta | 2014

Synergistic effect between lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6-based electrolyte for high-performance Li-ion batteries

Longfei Zhang; Lili Chai; Li Zhang; Ming Shen; Xianlin Zhang; Vincent S. Battaglia; Tyler Stephenson; Honghe Zheng


Energy & Fuels | 2011

Corrosion-Fouling of 316 Stainless Steel and Pure Iron by Hot Oil

Tyler Stephenson; Alan Kubis; Marzie Derakhshesh; Mike Hazelton; Chris M. B. Holt; Paul Eaton; Bruce Newman; Anne Hoff; Murray R. Gray; David Mitlin

Collaboration


Dive into the Tyler Stephenson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi Li

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huanlei Wang

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge