Chris S. Eckley
United States Environmental Protection Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chris S. Eckley.
Environmental Science & Technology | 2010
Che-Jen Lin; Mae Sexauer Gustin; Pattaraporn Singhasuk; Chris S. Eckley; Matthieu B. Miller
Multiple parameters have been suggested to influence the exchange of mercury (Hg) between the atmosphere and soils. However, models applied for estimating soil Hg flux are simple and do not consider the potential synergistic and antagonist relationships between factors controlling the exchange. This study applied a two-level factorial experimental design in a gas exchange chamber (GEC) to investigate the individual and combined effects of three environmental factors (temperature, light, and soil moisture) on soil Hg flux. It was shown that individually irradiation, soil moisture, and air temperature all significantly enhance Hg evasive flux (by 90-140%). Synergistic effects (20-30% of additional flux enhancement) were observed for all two-factor interactions, with air temperature/soil moisture and air temperature/irradiation being the most significant. Results from the factorial experiments suggest that a model incorporating the second-order interactions can appropriately explain the flux response to the changes of the studied factors. Based on the factorial experiment results and using the flux data for twelve soil materials measured with a dynamic flux chamber (DFC) at various temperatures, soil moisture contents, solar radiation exposures, and soil Hg contents, two empirical models for estimating Hg flux from soils were developed. Model verification with ambient flux data not used to develop the models suggested that the models were capable of estimating dry soil Hg flux with a high degree of predictability (r ∼ 0.9).
Science of The Total Environment | 2016
Collin A. Eagles-Smith; James G. Wiener; Chris S. Eckley; James J. Willacker; David C. Evers; Mark Marvin-DiPasquale; Daniel Obrist; Jacob A. Fleck; George R. Aiken; Jesse M. Lepak; Allyson K. Jackson; Jackson P. Webster; A. Robin Stewart; Jay A Davis; Charles N. Alpers; Joshua T. Ackerman
Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing efforts to control MeHg production in the West may be particularly beneficial for reducing food web exposure instead of efforts to simply control inorganic Hg sources.
Environmental Science & Technology | 2013
Chris S. Eckley; Matthew T. Parsons; Rachel Mintz; Monique Lapalme; Maxwell E. E. Mazur; Robert Tordon; Robert Elleman; Jennifer A. Graydon; Pierrette Blanchard; Vincent L. St. Louis
The Flin Flon, Manitoba copper smelter was Canadas largest point source of mercury emissions until its closure in 2010 after ~80 years of operation. The objective of this study was to understand the variables controlling the local ground-level air mercury concentrations before and after this major point source reduction. Total gaseous mercury (TGM) in air, mercury in precipitation, and other ancillary meteorological and air quality parameters were measured pre- and postsmelter closure, and mercury speciation measurements in air were collected postclosure. The results showed that TGM was significantly elevated during the time period when the smelter operated (4.1 ± 3.7 ng m(-3)), decreased only 20% during the year following its closure, and remained ~2-fold above background levels. Similar trends were observed for mercury concentrations in precipitation. Several lines of evidence indicated that while smelter stack emissions would occasionally mix down to the surface resulting in large spikes in TGM concentrations (up to 61 ng m(-3)), the largest contributor to elevated TGM concentrations before and after smelter closure was from surface-air fluxes from mercury-enriched soils and/or tailings. These findings highlight the ability of legacy mercury, deposited to local landscapes over decades from industrial activities, to significantly affect local air concentrations via emissions/re-emissions.
Science of The Total Environment | 2016
Chris S. Eckley; Michael T. Tate; Che-Jen Lin; Mae Sexauer Gustin; Stephen R. Dent; Collin A. Eagles-Smith; Michelle A. Lutz; Kimberly P. Wickland; Bronwen Wang; John E. Gray; Grant C. Edwards; David P. Krabbenhoft; David B. Smith
Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux+vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.
Environmental Science & Technology | 2015
Chris S. Eckley; Pierrette Blanchard; Daniel McLennan; Rachel Mintz; Mark Sekela
Prior to its closure, the base-metal smelter in Flin Flon, Manitoba, Canada was one of the North Americas largest mercury (Hg) emission sources. Our project objective was to understand the exchange of Hg between the soil and the air before and after the smelter closure. Field and laboratory Hg flux measurements were conducted to identify the controlling variables and used for spatial and temporal scaling. Study results showed that deposition from the smelter resulted in the surrounding soil being enriched in Hg (up to 99 μg g(-1)) as well as other metals. During the period of smelter operation, air concentrations were elevated (30 ± 19 ng m(-3)), and the soil was a net Hg sink (daily flux: -3.8 ng m(-2) h(-1)). Following the smelter closure, air Hg(0) concentrations were reduced, and the soils had large emissions (daily flux: 108 ng m(-2) h(-1)). The annual scaling of soil Hg emissions following the smelter closure indicated that the landscape impacted by smelter deposition emitted or re-emitted almost 100 kg per year. Elevated soil Hg concentrations and emissions are predicted to continue for hundreds of years before background concentrations are re-established. Overall, the results indicate that legacy Hg deposition will continue to cycle in the environment long after point-source reductions.
Environmental Science & Technology | 2015
Maxwell E. E. Mazur; Chris S. Eckley; Carl P. J. Mitchell
Soil mercury (Hg) emissions are an important component of the global Hg cycle. Sunlight induced photoreduction of oxidized Hg to gaseous elemental Hg is an important mechanism controlling emissions from the soil surface, however we currently understand little about how subsurface Hg stores participate in gaseous Hg cycling. Our study objective was to investigate the ability of Hg at deeper soil depths to participate in emissions. Soil fluxes were measured under controlled laboratory conditions utilizing an enriched stable Hg isotope tracer buried at 0, 1, 2, and 5 cm below the surface. Under dry and low-light conditions, the Hg isotope tracer buried at the different depths participated similarly in surface emissions (median flux: 7.5 ng m(-2) h(-1)). When the soils were wetted, Hg isotope tracer emissions increased significantly (up to 285 ng m(-2) h(-1)), with the highest fluxes (76% of emissions) originating from the surface 1 cm amended soils and decreasing with depth. Mercury associated with sandy soil up to 6 cm below the surface can be emitted, clearly demonstrating that volatilization can occur via processes unrelated to sunlight. These results have important implications for considering how long older, legacy soil Hg contamination continues to cycle between soil and atmosphere.
Science of The Total Environment | 2016
Jacob A. Fleck; Mark Marvin-DiPasquale; Collin A. Eagles-Smith; Joshua T. Ackerman; Michelle A. Lutz; Michael T. Tate; Charles N. Alpers; Britt D. Hall; David P. Krabbenhoft; Chris S. Eckley
Large-scale assessments are valuable in identifying primary factors controlling total mercury (THg) and monomethyl mercury (MeHg) concentrations, and distribution in aquatic ecosystems. Bed sediment THg and MeHg concentrations were compiled for >16,000 samples collected from aquatic habitats throughout the West between 1965 and 2013. The influence of aquatic feature type (canals, estuaries, lakes, and streams), and environmental setting (agriculture, forest, open-water, range, wetland, and urban) on THg and MeHg concentrations was examined. THg concentrations were highest in lake (29.3±6.5μgkg(-1)) and canal (28.6±6.9μgkg(-1)) sites, and lowest in stream (20.7±4.6μgkg(-1)) and estuarine (23.6±5.6μgkg(-1)) sites, which was partially a result of differences in grain size related to hydrologic gradients. By environmental setting, open-water (36.8±2.2μgkg(-1)) and forested (32.0±2.7μgkg(-1)) sites generally had the highest THg concentrations, followed by wetland sites (28.9±1.7μgkg(-1)), rangeland (25.5±1.5μgkg(-1)), agriculture (23.4±2.0μgkg(-1)), and urban (22.7±2.1μgkg(-1)) sites. MeHg concentrations also were highest in lakes (0.55±0.05μgkg(-1)) and canals (0.54±0.11μgkg(-1)), but, in contrast to THg, MeHg concentrations were lowest in open-water sites (0.22±0.03μgkg(-1)). The median percent MeHg (relative to THg) for the western region was 0.7%, indicating an overall low methylation efficiency; however, a significant subset of data (n>100) had percentages that represent elevated methylation efficiency (>6%). MeHg concentrations were weakly correlated with THg (r(2)=0.25) across western North America. Overall, these results highlight the large spatial variability in sediment THg and MeHg concentrations throughout western North America and underscore the important roles that landscape and land-use characteristics have on the MeHg cycle.
Science of The Total Environment | 2016
Joseph L. Domagalski; Michael S. Majewski; Charles N. Alpers; Chris S. Eckley; Collin A. Eagles-Smith; Liam N. Schenk; Susan Wherry
Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio>1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (<0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (<0.1), whereas urbanized areas had higher ratios (0.34-1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.
AMBIO: A Journal of the Human Environment | 2018
Heileen Hsu-Kim; Chris S. Eckley; Darío Achá; Xinbin Feng; Cynthia C. Gilmour; Sofi Jonsson; Carl P. J. Mitchell
The environmental cycling of mercury (Hg) can be affected by natural and anthropogenic perturbations. Of particular concern is how these disruptions increase mobilization of Hg from sites and alter the formation of monomethylmercury (MeHg), a bioaccumulative form of Hg for humans and wildlife. The scientific community has made significant advances in recent years in understanding the processes contributing to the risk of MeHg in the environment. The objective of this paper is to synthesize the scientific understanding of how Hg cycling in the aquatic environment is influenced by landscape perturbations at the local scale, perturbations that include watershed loadings, deforestation, reservoir and wetland creation, rice production, urbanization, mining and industrial point source pollution, and remediation. We focus on the major challenges associated with each type of alteration, as well as management opportunities that could lessen both MeHg levels in biota and exposure to humans. For example, our understanding of approximate response times to changes in Hg inputs from various sources or landscape alterations could lead to policies that prioritize the avoidance of certain activities in the most vulnerable systems and sequestration of Hg in deep soil and sediment pools. The remediation of Hg pollution from historical mining and other industries is shifting towards in situ technologies that could be less disruptive and less costly than conventional approaches. Contemporary artisanal gold mining has well-documented impacts with respect to Hg; however, significant social and political challenges remain in implementing effective policies to minimize Hg use. Much remains to be learned as we strive towards the meaningful application of our understanding for stakeholders, including communities living near Hg-polluted sites, environmental policy makers, and scientists and engineers tasked with developing watershed management solutions. Site-specific assessments of MeHg exposure risk will require new methods to predict the impacts of anthropogenic perturbations and an understanding of the complexity of Hg cycling at the local scale.
Environmental Pollution | 2017
Chris S. Eckley; Todd P. Luxton; Jennifer Goetz; John McKernan
Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log Kd values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management actions can have an impact on the sediment-porewater characteristics that affect MeHg production. Such findings are also relevant to natural water systems that experience wetting and drying cycles, such as floodplains and ombrotrophic wetlands.