Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heileen Hsu-Kim is active.

Publication


Featured researches published by Heileen Hsu-Kim.


Environmental Science & Technology | 2012

Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans

Xinyu Yang; Andreas P. Gondikas; Stella M. Marinakos; Mélanie Auffan; Jie Liu; Heileen Hsu-Kim; Joel N. Meyer

The rapidly increasing use of silver nanoparticles (Ag NPs) in consumer products and medical applications has raised ecological and human health concerns. A key question for addressing these concerns is whether Ag NP toxicity is mechanistically unique to nanoparticulate silver, or if it is a result of the release of silver ions. Furthermore, since Ag NPs are produced in a large variety of monomer sizes and coatings, and since their physicochemical behavior depends on the media composition, it is important to understand how these variables modulate toxicity. We found that a lower ionic strength medium resulted in greater toxicity (measured as growth inhibition) of all tested Ag NPs to Caenorhabditis elegans and that both dissolved silver and coating influenced Ag NP toxicity. We found a linear correlation between Ag NP toxicity and dissolved silver, but no correlation between size and toxicity. We used three independent and complementary approaches to investigate the mechanisms of toxicity of differentially coated and sized Ag NPs: pharmacological (rescue with trolox and N-acetylcysteine), genetic (analysis of metal-sensitive and oxidative stress-sensitive mutants), and physicochemical (including analysis of dissolution of Ag NPs). Oxidative dissolution was limited in our experimental conditions (maximally 15% in 24 h) yet was key to the toxicity of most Ag NPs, highlighting a critical role for dissolved silver complexed with thiols in the toxicity of all tested Ag NPs. Some Ag NPs (typically less soluble due to size or coating) also acted via oxidative stress, an effect specific to nanoparticulate silver. However, in no case studied here was the toxicity of a Ag NP greater than would be predicted by complete dissolution of the same mass of silver as silver ions.


Environmental Science & Technology | 2011

Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids

George R. Aiken; Heileen Hsu-Kim; Joseph N. Ryan

Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids George R. Aiken,* Heileen Hsu-Kim, and Joseph N. Ryan U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, North Carolina 27708, United States Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States


Environmental Science & Technology | 2012

Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.

Gregory V. Lowry; Benjamin Espinasse; Appala Raju Badireddy; Curtis J. Richardson; Brian C. Reinsch; Lee D. Bryant; Audrey J. Bone; Amrika Deonarine; So-Ryong Chae; Mathieu Therezien; Benjamin P. Colman; Heileen Hsu-Kim; Emily S. Bernhardt; Cole W. Matson; Mark R. Wiesner

Transformations and long-term fate of engineered nanomaterials must be measured in realistic complex natural systems to accurately assess the risks that they may pose. Here, we determine the long-term behavior of poly(vinylpyrrolidone)-coated silver nanoparticles (AgNPs) in freshwater mesocosms simulating an emergent wetland environment. AgNPs were either applied to the water column or to the terrestrial soils. The distribution of silver among water, solids, and biota, and Ag speciation in soils and sediment was determined 18 months after dosing. Most (70 wt %) of the added Ag resided in the soils and sediments, and largely remained in the compartment in which they were dosed. However, some movement between soil and sediment was observed. Movement of AgNPs from terrestrial soils to sediments was more facile than from sediments to soils, suggesting that erosion and runoff is a potential pathway for AgNPs to enter waterways. The AgNPs in terrestrial soils were transformed to Ag(2)S (~52%), whereas AgNPs in the subaquatic sediment were present as Ag(2)S (55%) and Ag-sulfhydryl compounds (27%). Despite significant sulfidation of the AgNPs, a fraction of the added Ag resided in the terrestrial plant biomass (~3 wt % for the terrestrially dosed mesocosm), and relatively high body burdens of Ag (0.5-3.3 μg Ag/g wet weight) were found in mosquito fish and chironomids in both mesocosms. Thus, Ag from the NPs remained bioavailable even after partial sulfidation and when water column total Ag concentrations are low (<0.002 mg/L).


Environmental Science & Technology | 2013

Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review

Heileen Hsu-Kim; Katarzyna H. Kucharzyk; Tong Zhang; Marc A. Deshusses

Mercury is a potent neurotoxin for humans, particularly if the metal is in the form of methylmercury. Mercury is widely distributed in aquatic ecosystems as a result of anthropogenic activities and natural earth processes. A first step toward bioaccumulation of methylmercury in aquatic food webs is the methylation of inorganic forms of the metal, a process that is primarily mediated by anaerobic bacteria. In this Review, we evaluate the current state of knowledge regarding the mechanisms regulating microbial mercury methylation, including the speciation of mercury in environments where methylation occurs and the processes that control mercury bioavailability to these organisms. Methylmercury production rates are generally related to the presence and productivity of methylating bacteria and also the uptake of inorganic mercury to these microorganisms. Our understanding of the mechanisms behind methylation is limited due to fundamental questions related to the geochemical forms of mercury that persist in anoxic settings, the mode of uptake by methylating bacteria, and the biochemical pathway by which these microorganisms produce and degrade methylmercury. In anoxic sediments and water, the geochemical forms of mercury (and subsequent bioavailability) are largely governed by reactions between Hg(II), inorganic sulfides, and natural organic matter. These interactions result in a mixture of dissolved, nanoparticulate, and larger crystalline particles that cannot be adequately represented by conventional chemical equilibrium models for Hg bioavailability. We discuss recent advances in nanogeochemistry and environmental microbiology that can provide new tools and unique perspectives to help us solve the question of how microorganisms methylate mercury. An understanding of the factors that cause the production and degradation of methylmercury in the environment is ultimately needed to inform policy makers and develop long-term strategies for controlling mercury contamination.


Environmental Science & Technology | 2012

Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation.

Andreas P. Gondikas; Amanda Morris; Brian C. Reinsch; Stella M. Marinakos; Gregory V. Lowry; Heileen Hsu-Kim

The persistence of silver nanoparticles in aquatic environments and their subsequent impact on organisms depends on key transformation processes, which include aggregation, dissolution, and surface modifications by metal-complexing ligands. Here, we studied how cysteine, an amino acid representative of thiol ligands that bind monovalent silver, can alter the surface chemistry, aggregation, and dissolution of zero-valent silver nanoparticles. We compared nanoparticles synthesized with two coatings, citrate and polyvinylpirrolidone (PVP), and prepared nanoparticle suspensions (approximately 8 μM total Ag) containing an excess of cysteine (400 μM). Within 48 h, up to 47% of the silver had dissolved, as indicated by filtration of the samples with a 0.025-μm filter. Initial dissolution rates were calculated from the increase of dissolved silver concentration when particles were exposed to cysteine and normalized to the available surface area of nanoparticles in solution. In general, the rates of dissolution were almost 3 times faster for citrate-coated nanoparticles relative to PVP-coated nanoparticles. Rates tended to be slower in solutions with higher ionic strength in which the nanoparticles were aggregating. X-ray absorption spectroscopy analysis of the particles suggested that cysteine adsorbed to silver nanoparticles surfaces through the formation of Ag(+I)--sulfhydryl bonds. Overall, the results of this study highlight the importance of modifications by sulfhydryl-containing ligands that can drastically influence the long-term reactivity of silver nanoparticles in the aquatic environment and their bioavailability to exposed organisms. Our findings demonstrate the need to consider multiple interlinked transformation processes when assessing the bioavailability, environmental risks, and safety of nanoparticles, particularly in the presence of metal-binding ligands.


Nature Geoscience | 2010

Photolytic degradation of methylmercury enhanced by binding to natural organic ligands.

Tong Zhang; Heileen Hsu-Kim

Monomethylmercury is a neurotoxin that poses significant risks to human health1 due to its bioaccumulation in food webs. Sunlight degradation to inorganic mercury is an important component of the mercury cycle that maintains methylmercury at low concentrations in natural waters. Rates of photodecomposition, however, can vary drastically between surface waters2–5 for reasons that are largely unknown. Here, we show that photodegradation occurs through singlet oxygen, a highly reactive form of dissolved oxygen generated by sunlight irradiation of dissolved natural organic matter. The kinetics of degradation, however, depended on water constituents that bind methylmercury cations. Relatively fast degradation rates (similar to observations in freshwater lakes) applied only to methylmercury species bound to organic sulfur-containing thiol ligands such as glutathione, mercaptoacetate, and humics. In contrast, methylmercury-chloride complexes, which are dominant in marine systems, were unreactive. Binding by thiols lowered the excitation energy of the carbon-mercury bond on the methylmercury molecule6–7 and subsequently increased reactivity towards bond breakage and decomposition. Our results explain methylmercury photodecomposition rates that are relatively rapid in freshwater lakes2–4 and slow in marine waters5.


Environmental Science & Technology | 2014

Silver Nanoparticle Behavior, Uptake, and Toxicity in Caenorhabditis elegans: Effects of Natural Organic Matter

Xinyu Yang; Chuanjia Jiang; Heileen Hsu-Kim; Appala Raju Badireddy; Michael Dykstra; Mark R. Wiesner; David E. Hinton; Joel N. Meyer

Significant progress has been made in understanding the toxicity of silver nanoparticles (Ag NPs) under carefully controlled laboratory conditions. Natural organic matter (NOM) is omnipresent in complex environmental systems, where it may alter the behavior of nanoparticles in these systems. We exposed the nematode Caenorhabditis elegans to Ag NP suspensions with or without one of two kinds of NOM, Suwannee River and Pony Lake fulvic acids (SRFA and PLFA, respectively). PLFA rescued toxicity more effectively than SRFA. Measurement of total tissue silver content indicated that PLFA reduced total organismal (including digestive tract) uptake of ionic silver, but not of citrate-coated Ag NPs (CIT-Ag NPs). The majority of the CIT-Ag NP uptake was in the digestive tract. Limited tissue uptake was detected by hyperspectral microscopy but not by transmission electron microscopy. Co-exposure to PLFA resulted in the formation of NOM-Ag NP composites (both in medium and in nematodes) and rescued AgNO3- and CIT-Ag NP-induced cellular damage, potentially by decreasing intracellular uptake of CIT-Ag NPs.


Environmental Science & Technology | 2011

Effects of Humic Substances on Precipitation and Aggregation of Zinc Sulfide Nanoparticles

Amrika Deonarine; Boris L. T. Lau; George R. Aiken; Joseph N. Ryan; Heileen Hsu-Kim

Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.


Geochemical Transactions | 2008

Formation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophs.

Heileen Hsu-Kim; Katherine M. Mullaugh; Jeffrey J. Tsang; Mustafa Yücel; George W. Luther

BackgroundThe speciation of dissolved sulfide in the water immediately surrounding deep-ocean hydrothermal vents is critical to chemoautotrophic organisms that are the primary producers of these ecosystems. The objective of this research was to identify the role of Zn and Fe for controlling the speciation of sulfide in the hydrothermal vent fields at the Eastern Lau Spreading Center (ELSC) in the southern Pacific Ocean. Compared to other well-studied hydrothermal systems in the Pacific, the ELSC is notable for unique ridge characteristics and gradients over short distances along the north-south ridge axis.ResultsIn June 2005, diffuse-flow (< 50°C) and high-temperature (> 250°C) vent fluids were collected from four field sites along the ELSC ridge axis. Total and filtered Zn and Fe concentrations were quantified in the vent fluid samples using voltammetric and spectrometric analyses. The results indicated north-to-south variability in vent fluid composition. In the high temperature vent fluids, the ratio of total Fe to total Zn varied from 39 at Kilo Moana, the most northern site, to less than 7 at the other three sites. The concentrations of total Zn, Fe, and acid-volatile sulfide indicated that oversaturation and precipitation of sphalerite (ZnS(s)) and pyrite (FeS2(s)) were possible during cooling of the vent fluids as they mixed with the surrounding seawater. In contrast, most samples were undersaturated with respect to mackinawite (FeS(s)). The reactivity of Zn(II) in the filtered samples was tested by adding Cu(II) to the samples to induce metal-exchange reactions. In a portion of the samples, the concentration of labile Zn2+ increased after the addition of Cu(II), indicating the presence of strongly-bound Zn(II) species such as ZnS clusters and nanoparticles.ConclusionResults of this study suggest that Zn is important to sulfide speciation at ELSC vent habitats, particularly at the southern sites where Zn concentrations increase relative to Fe. As the hydrothermal fluids mix with the ambient seawater, Zn-sulfide clusters and nanoparticles are likely preventing sulfide oxidation by O2 and reducing bioavailability of S(-II) to organisms.


Environmental Science & Technology | 2012

The Impact of Coal Combustion Residue Effluent on Water Resources: A North Carolina Example

Laura Ruhl; Avner Vengosh; Gary S. Dwyer; Heileen Hsu-Kim; Grace Schwartz; Autumn Romanski; S. Daniel Smith

The combustion of coal to generate electricity produces about 130 million tons of coal combustion residues (CCRs) each year in the United States; yet their environmental implications are not well constrained. This study systematically documents the quality of effluents discharged from CCR settling ponds or cooling water at ten sites and the impact on associated waterways in North Carolina, compared to a reference lake. We measured the concentrations of major and trace elements in over 300 samples from CCR effluents, surface water from lakes and rivers at different downstream and upstream points, and pore water extracted from lake sediments. The data show that CCR effluents contain high levels of contaminants that in several cases exceed the U.S. EPA guidelines for drinking water and ecological effects. This investigation demonstrates the quality of receiving waters in North Carolina depends on (1) the ratio between effluent flux and freshwater resource volumes and (2) recycling of trace elements through adsorption on suspended particles and release to deep surface water or pore water in bottom sediments during periods of thermal water stratification and anoxic conditions. The impact of CCRs is long-term, which influences contaminant accumulation and the health of aquatic life in water associated with coal-fired power plants.

Collaboration


Dive into the Heileen Hsu-Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Ruhl

University of Arkansas at Little Rock

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory V. Lowry

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Nicholas A. Robins

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge