Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Wojtan is active.

Publication


Featured researches published by Chris Wojtan.


international conference on computer graphics and interactive techniques | 2007

A finite element method for animating large viscoplastic flow

Adam W. Bargteil; Chris Wojtan; Jessica K. Hodgins; Greg Turk

We present an extension to Lagrangian finite element methods to allow for large plastic deformations of solid materials. These behaviors are seen in such everyday materials as shampoo, dough, and clay as well as in fantastic gooey and blobby creatures in special effects scenes. To account for plastic deformation, we explicitly update the linear basis functions defined over the finite elements during each simulation step. When these updates cause the basis functions to become ill-conditioned, we remesh the simulation domain to produce a new high-quality finite-element mesh, taking care to preserve the original boundary. We also introduce an enhanced plasticity model that preserves volume and includes creep and work hardening/softening. We demonstrate our approach with simulations of synthetic objects that squish, dent, and flow. To validate our methods, we compare simulation results to videos of real materials.


international conference on computer graphics and interactive techniques | 2008

Fast viscoelastic behavior with thin features

Chris Wojtan; Greg Turk

We introduce a method for efficiently animating a wide range of deformable materials. We combine a high resolution surface mesh with a tetrahedral finite element simulator that makes use of frequent re-meshing. This combination allows for fast and detailed simulations of complex elastic and plastic behavior. We significantly expand the range of physical parameters that can be simulated with a single technique, and the results are free from common artifacts such as volume-loss, smoothing, popping, and the absence of thin features like strands and sheets. Our decision to couple a high resolution surface with low-resolution physics leads to efficient simulation and detailed surface features, and our approach to creating the tetrahedral mesh leads to an order-of-magnitude speedup over previous techniques in the time spent re-meshing. We compute masses, collisions, and surface tension forces on the scale of the fine mesh, which helps avoid visual artifacts due to the differing mesh resolutions. The result is a method that can simulate a large array of different material behaviors with high resolution features in a short amount of time.


international conference on computer graphics and interactive techniques | 2009

Deforming meshes that split and merge

Chris Wojtan; Nils Thürey; Markus H. Gross; Greg Turk

We present a method for accurately tracking the moving surface of deformable materials in a manner that gracefully handles topological changes. We employ a Lagrangian surface tracking method, and we use a triangle mesh for our surface representation so that fine features can be retained. We make topological changes to the mesh by first identifying merging or splitting events at a particular grid resolution, and then locally creating new pieces of the mesh in the affected cells using a standard isosurface creation method. We stitch the new, topologically simplified portion of the mesh to the rest of the mesh at the cell boundaries. Our method detects and treats topological events with an emphasis on the preservation of detailed features, while simultaneously simplifying those portions of the material that are not visible. Our surface tracker is not tied to a particular method for simulating deformable materials. In particular, we show results from two significantly different simulators: a Lagrangian FEM simulator with tetrahedral elements, and an Eulerian grid-based fluid simulator. Although our surface tracking method is generic, it is particularly well-suited for simulations that exhibit fine surface details and numerous topological events. Highlights of our results include merging of viscoplastic materials with complex geometry, a taffy-pulling animation with many fold and merge events, and stretching and slicing of stiff plastic material.


international conference on computer graphics and interactive techniques | 2010

A multiscale approach to mesh-based surface tension flows

Nils Thürey; Chris Wojtan; Markus H. Gross; Greg Turk

We present an approach to simulate flows driven by surface tension based on triangle meshes. Our method consists of two simulation layers: the first layer is an Eulerian method for simulating surface tension forces that is free from typical strict time step constraints. The second simulation layer is a Lagrangian finite element method that simulates sub-grid scale wave details on the fluid surface. The surface wave simulation employs an unconditionally stable, symplectic time integration method that allows for a high propagation speed due to strong surface tension. Our approach can naturally separate the grid- and sub-grid scales based on a volume-preserving mean curvature flow. As our model for the sub-grid dynamics enforces a local conservation of mass, it leads to realistic pinch off and merging effects. In addition to this method for simulating dynamic surface tension effects, we also present an efficient non-oscillatory approximation for capturing damped surface tension behavior. These approaches allow us to efficiently simulate complex phenomena associated with strong surface tension, such as Rayleigh-Plateau instabilities and crown splashes, in a short amount of time.


international conference on computer graphics and interactive techniques | 2013

Highly adaptive liquid simulations on tetrahedral meshes

Ryoichi Ando; Nils Thürey; Chris Wojtan

We introduce a new method for efficiently simulating liquid with extreme amounts of spatial adaptivity. Our method combines several key components to drastically speed up the simulation of large-scale fluid phenomena: We leverage an alternative Eulerian tetrahedral mesh discretization to significantly reduce the complexity of the pressure solve while increasing the robustness with respect to element quality and removing the possibility of locking. Next, we enable subtle free-surface phenomena by deriving novel second-order boundary conditions consistent with our discretization. We couple this discretization with a spatially adaptive Fluid-Implicit Particle (FLIP) method, enabling efficient, robust, minimally-dissipative simulations that can undergo sharp changes in spatial resolution while minimizing artifacts. Along the way, we provide a new method for generating a smooth and detailed surface from a set of particles with variable sizes. Finally, we explore several new sizing functions for determining spatially adaptive simulation resolutions, and we show how to couple them to our simulator. We combine each of these elements to produce a simulation algorithm that is capable of creating animations at high maximum resolutions while avoiding common pitfalls like inaccurate boundary conditions and inefficient computation.


international conference on computer graphics and interactive techniques | 2010

Physics-inspired topology changes for thin fluid features

Chris Wojtan; Nils Thürey; Markus H. Gross; Greg Turk

We propose a mesh-based surface tracking method for fluid animation that both preserves fine surface details and robustly adjusts the topology of the surface in the presence of arbitrarily thin features like sheets and strands. We replace traditional re-sampling methods with a convex hull method for connecting surface features during topological changes. This technique permits arbitrarily thin fluid features with minimal re-sampling errors by reusing points from the original surface. We further reduce re-sampling artifacts with a subdivision-based mesh-stitching algorithm, and we use a higher order interpolating subdivision scheme to determine the location of any newly-created vertices. The resulting algorithm efficiently produces detailed fluid surfaces with arbitrarily thin features while maintaining a consistent topology with the underlying fluid simulation.


Computer Graphics Forum | 2012

Explicit Mesh Surfaces for Particle Based Fluids

Jihun Yu; Chris Wojtan; Greg Turk; Chee Yap

We introduce the idea of using an explicit triangle mesh to track the air/fluid interface in a smoothed particle hydrodynamics (SPH) simulator. Once an initial surface mesh is created, this mesh is carried forward in time using nearby particle velocities to advect the mesh vertices. The mesh connectivity remains mostly unchanged across time‐steps; it is only modified locally for topology change events or for the improvement of triangle quality. In order to ensure that the surface mesh does not diverge from the underlying particle simulation, we periodically project the mesh surface onto an implicit surface defined by the physics simulation. The mesh surface gives us several advantages over previous SPH surface tracking techniques. We demonstrate a new method for surface tension calculations that clearly outperforms the state of the art in SPH surface tension for computer graphics. We also demonstrate a method for tracking detailed surface information (like colors) that is less susceptible to numerical diffusion than competing techniques. Finally, our temporally‐coherent surface mesh allows us to simulate high‐resolution surface wave dynamics without being limited by the particle resolution of the SPH simulation.


symposium on computer animation | 2011

Hybrid smoothed particle hydrodynamics

Karthik Raveendran; Chris Wojtan; Greg Turk

We present a new algorithm for enforcing incompressibility for Smoothed Particle Hydrodynamics (SPH) by preserving uniform density across the domain. We propose a hybrid method that uses a Poisson solve on a coarse grid to enforce a divergence free velocity field, followed by a local density correction of the particles. This avoids typical grid artifacts and maintains the Lagrangian nature of SPH by directly transferring pressures onto particles. Our method can be easily integrated with existing SPH techniques such as the incompressible PCISPH method as well as weakly compressible SPH by adding an additional force term. We show that this hybrid method accelerates convergence towards uniform density and permits a significantly larger time step compared to earlier approaches while producing similar results. We demonstrate our approach in a variety of scenarios with significant pressure gradients such as splashing liquids.


symposium on computer animation | 2006

Keyframe control of complex particle systems using the adjoint method

Chris Wojtan; Peter J. Mucha; Greg Turk

Control of physical simulation has become a popular topic in the field of computer graphics. Keyframe control has been applied to simulations of rigid bodies, smoke, liquid, flocks, and finite element-based elastic bodies. In this paper, we create a framework for controlling systems of interacting particles -- paying special attention to simulations of cloth and flocking behavior. We introduce a novel integrator-swapping approximation in order to apply the adjoint method to linearized implicit schemes appropriate for cloth simulation. This allows the control of cloth while avoiding computationally infeasible derivative calculations. Meanwhile, flocking control using the adjoint method is significantly more efficient than currently-used methods for constraining group behaviors, allowing the controlled simulation of greater numbers of agents in fewer optimization iterations.


international conference on computer graphics and interactive techniques | 2012

Tracking surfaces with evolving topology

Morten Bojsen-Hansen; Hao Li; Chris Wojtan

We present a method for recovering a temporally coherent, deforming triangle mesh with arbitrarily changing topology from an incoherent sequence of static closed surfaces. We solve this problem using the surface geometry alone, without any prior information like surface templates or velocity fields. Our system combines a proven strategy for triangle mesh improvement, a robust multi-resolution non-rigid registration routine, and a reliable technique for changing surface mesh topology. We also introduce a novel topological constraint enforcement algorithm to ensure that the output and input always have similar topology. We apply our technique to a series of diverse input data from video reconstructions, physics simulations, and artistic morphs. The structured output of our algorithm allows us to efficiently track information like colors and displacement maps, recover velocity information, and solve PDEs on the mesh as a post process.

Collaboration


Dive into the Chris Wojtan's collaboration.

Top Co-Authors

Avatar

Greg Turk

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nils Thürey

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Mucha

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karthik Raveendran

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Hahn

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar

Morten Bojsen-Hansen

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar

Stefan Jeschke

Institute of Science and Technology Austria

View shared research outputs
Researchain Logo
Decentralizing Knowledge