Christel Genoud
Friedrich Miescher Institute for Biomedical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christel Genoud.
Neuron | 2002
Graham Knott; Charles Quairiaux; Christel Genoud; Egbert Welker
During development, alterations in sensory experience modify the structure of cortical neurons, particularly at the level of the dendritic spine. Are similar adaptations involved in plasticity of the adult cortex? Here we show that a 24 hr period of single whisker stimulation in freely moving adult mice increases, by 36%, the total synaptic density in the corresponding cortical barrel. This is due to an increase in both excitatory and inhibitory synapses found on spines. Four days after stimulation, the inhibitory inputs to the spines remain despite total synaptic density returning to pre-stimulation levels. Functional analysis of layer IV cells demonstrated altered response properties, immediately after stimulation, as well as four days later. These results indicate activity-dependent alterations in synaptic circuitry in adulthood, modifying the flow of sensory information into the cerebral cortex.
Cell | 2012
Inês Pinheiro; Raphael Margueron; Nicholas Shukeir; Michael Eisold; Christoph Fritzsch; Florian Richter; Gerhard Mittler; Christel Genoud; Susumu Goyama; Mineo Kurokawa; Jinsook Son; Danny Reinberg; Monika Lachner; Thomas Jenuwein
Heterochromatin serves important functions, protecting genome integrity and stabilizing gene expression programs. Although the Suv39h methyltransferases (KMTs) are known to ensure pericentric H3K9me3 methylation, the mechanisms that initiate and maintain mammalian heterochromatin organization remain elusive. We developed a biochemical assay and used in vivo analyses in mouse embryonic fibroblasts to identify Prdm3 and Prdm16 as redundant H3K9me1-specific KMTs that direct cytoplasmic H3K9me1 methylation. The H3K9me1 is converted in the nucleus to H3K9me3 by the Suv39h enzymes to reinforce heterochromatin. Simultaneous depletion of Prdm3 and Prdm16 abrogates H3K9me1 methylation, prevents Suv39h-dependent H3K9me3 trimethylation, and derepresses major satellite transcription. Most strikingly, DNA-FISH and electron microscopy reveal that combined impairment of Prdm3 and Prdm16 results in disintegration of heterochromatic foci and disruption of the nuclear lamina. Our data identify Prdm3 and Prdm16 as H3K9me1 methyltransferases and expose a functional framework in which anchoring to the nuclear periphery helps maintain the integrity of mammalian heterochromatin.
The Journal of Neuroscience | 2004
Christel Genoud; Graham Knott; Kazuko Sakata; Bai Lu; Egbert Welker
Increased sensory stimulation in the adult whisker-to-barrel pathway induces the expression of BDNF as well as synapse formation in cortical layer IV. Here, we investigated whether BDNF plays a role in the alterations of connectivity between neurons by analyzing the ultrastructure of the BDNF heterozygote mouse, characterized by a reduced level of BDNF expression. Using serial section electron microscopy, we measured synapse density, spine morphology, and synaptic vesicle distribution to show that mice with a reduced level of BDNF have a barrel neuropil that is indistinguishable from wild-type controls. After 24 hr of whisker stimulation, however, there is no indication of synapse formation in the heterozygous mouse. Whereas the balance between excitatory and inhibitory synapses is modified in the controls, it remains constant in the heterozygotes. The distribution of synaptic vesicles in excitatory synapses is the same in heterozygous and wild-type mice and is not influenced by the stimulation paradigm. Spine volume, however, is unchanged by stimulation in the wild-type animals, but does increase significantly in the heterozygous animal. These results provide evidence that, in vivo, BDNF plays an important role in the structural rearrangement of adult cortical circuitry as a consequence of an increased sensory input.
Journal of Cell Biology | 2016
Wolf Heusermann; Justin Hean; Dominic Trojer; Emmanuelle Steib; Stefan von Bueren; Alexandra Graff-Meyer; Christel Genoud; Katrin Martin; Nicolas Pizzato; Johannes Voshol; David V. Morrissey; Samir El Andaloussi; Matthew J.A. Wood; Nicole Meisner-Kober
Heusermann et al. use a single-vesicle dye-tracing analysis in live cells showing that exosomes enter cells as intact vesicles, primarily at filopodia-active regions, and sort into endocytic vesicle circuits that are targeted to scan the ER before being directed to lysosomes.
Neuron | 2014
Volker Busskamp; Jacek Krol; Dasha Nelidova; Janine M Daum; Tamas Szikra; Ben Tsuda; Josephine Jüttner; Karl Farrow; Brigitte Gross Scherf; Claudia Patricia Patino Alvarez; Christel Genoud; Vithiyanjali Sothilingam; Naoyuki Tanimoto; Michael B. Stadler; Mathias W. Seeliger; Markus Stoffel; Witold Filipowicz; Botond Roska
The outer segments of cones serve as light detectors for daylight color vision, and their dysfunction leads to human blindness conditions. We show that the cone-specific disruption of DGCR8 in adult mice led to the loss of miRNAs and the loss of outer segments, resulting in photoreceptors with significantly reduced light responses. However, the number of cones remained unchanged. The loss of the outer segments occurred gradually over 1 month, and during this time the genetic signature of cones decreased. Reexpression of the sensory-cell-specific miR-182 and miR-183 prevented outer segment loss. These miRNAs were also necessary and sufficient for the formation of inner segments, connecting cilia and short outer segments, as well as light responses in stem-cell-derived retinal cultures. Our results show that miR-182- and miR-183-regulated pathways are necessary for cone outer segment maintenance in vivo and functional outer segment formation in vitro.
The FASEB Journal | 2011
Debarshi Mustafi; Brian M. Kevany; Christel Genoud; Kiichiro Okano; Artur V. Cideciyan; Alexander Sumaroka; Alejandro J. Roman; Samuel G. Jacobson; Andreas Engel; Mark D. Adams; Krzysztof Palczewski
Enhanced S‐cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor‐knockout (Nrl–/–) mouse model demonstrates many phenotypic features of human ESCS, including unstable S‐cone‐positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild‐type (Wt) and Nrl–/– mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high‐resolution (100 nm) imaging and reconstruction of Nrl–/– retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl–/– retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl–/– mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S‐cone syndrome causes progressive retinal degeneration. FASEB J. 25, 3157‐3176 (2011). www.fasebj.org
Nature Neuroscience | 2013
Le Xiao; Nicolas Michalski; Elin Kronander; Enida Gjoni; Christel Genoud; Graham Knott; Ralf Schneggenburger
Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, the mechanisms that determine synapse size in CNS circuits are largely unknown. Here we use the calyx of Held synapse, a major relay in the auditory system, to identify and study signaling pathways that specify large nerve terminal size and fast synaptic transmission. Using genome-wide screening, we identified bone morphogenetic proteins (BMPs) as candidate signaling molecules in the area of calyx synapses. Conditional deletion of BMP receptors in the auditory system of mice led to aberrations of synapse morphology and function specifically at the calyx of Held, with impaired nerve terminal growth, loss of monoinnervation and less mature transmitter release properties. Thus, BMP signaling specifies large and fast-transmitting synapses in the auditory system in a process that shares homologies with, but also extends beyond, retrograde BMP signaling at Drosophila neuromuscular synapses.
PLOS ONE | 2009
Hannah E. J. Armer; Giovanni Mariggi; Ken M. Y. P'ng; Christel Genoud; Alexander G. Monteith; A. J. Bushby; Holger Gerhardt; Lucy M. Collinson
The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) and Serial Block Face/Scanning Electron Microscopy (SBF/SEM). The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism.
Biology of the Cell | 2016
Benjamin Titze; Christel Genoud
Electron microscopy (EM) has been a key imaging method to investigate biological ultrastructure for over six decades. In recent years, novel volume EM techniques have significantly advanced nanometre‐scale imaging of cells and tissues in three dimensions. Previously, this had depended on the slow and error‐prone manual tasks of cutting and handling large numbers of sections, and imaging them one‐by‐one with transmission EM. Now, automated volume imaging methods mostly based on scanning EM (SEM) allow faster and more reliable acquisition of serial images through tissue volumes and achieve higher z‐resolution. Various software tools have been developed to manipulate the acquired image stacks and facilitate quantitative analysis. Here, we introduce three volume SEM methods: serial block‐face electron microscopy (SBEM), focused ion beam SEM (FIB‐SEM) and automated tape‐collecting ultramicrotome SEM (ATUM‐SEM). We discuss and compare their capabilities, provide an overview of the full volume SEM workflow for obtaining 3D datasets and showcase different applications for biological research.
Journal of Cell Science | 2013
Graham Knott; Christel Genoud
Summary Since electron microscopy (EM) first appeared in the 1930s, it has held centre stage as the primary tool for the exploration of biological structure. Yet, with the recent developments of light microscopy techniques that overcome the limitations imposed by the diffraction boundary, the question arises as to whether the importance of EM in on the wane. This Commentary describes some of the pioneering studies that have shaped our understanding of cell structure. These include the development of cryo-EM techniques that have given researchers the ability to capture images of native structures and at the molecular level. It also describes how a number of recent developments significantly increase the ability of EM to visualise biological systems across a range of length scales, and in 3D, ensuring that EM will remain at the forefront of biology research for the foreseeable future.