Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christel Valencia is active.

Publication


Featured researches published by Christel Valencia.


Protein Science | 2009

High-throughput automated refolding screening of inclusion bodies

Renaud Vincentelli; Stéphane Canaan; Valérie Campanacci; Christel Valencia; Damien Maurin; Frédéric Frassinetti; Loréna Scappucini-Calvo; Yves Bourne; Christian Cambillau; Christophe Bignon

One of the main stumbling blocks encountered when attempting to express foreign proteins in Escherichia coli is the occurrence of amorphous aggregates of misfolded proteins, called inclusion bodies (IB). Developing efficient protein native structure recovery procedures based on IB refolding is therefore an important challenge. Unfortunately, there is no “universal” refolding buffer: Experience shows that refolding buffer composition varies from one protein to another. In addition, the methods developed so far for finding a suitable refolding buffer suffer from a number of weaknesses. These include the small number of refolding formulations, which often leads to negative results, solubility assays incompatible with high‐throughput, and experiment formatting not suitable for automation. To overcome these problems, it was proposed in the present study to address some of these limitations. This resulted in the first completely automated IB refolding screening procedure to be developed using a 96‐well format. The 96 refolding buffers were obtained using a fractional factorial approach. The screening procedure is potentially applicable to any nonmembrane protein, and was validated with 24 proteins in the framework of two Structural Genomics projects. The tests used for this purpose included the use of quality control methods such as circular dichroism, dynamic light scattering, and crystallogenesis. Out of the 24 proteins, 17 remained soluble in at least one of the 96 refolding buffers, 15 passed large‐scale purification tests, and five gave crystals.


Acta Crystallographica Section D-biological Crystallography | 2002

A medium-throughput crystallization approach

Gerlind Sulzenbacher; Arnaud Gruez; Véronique Roig-Zamboni; Silvia Spinelli; Christel Valencia; Fabienne Pagot; Renaud Vincentelli; Christophe Bignon; Aurelia Salomoni; Sacha Grisel; Damien Maurin; Céline Huyghe; Kent Johansson; Alice Grassick; Alain Roussel; Yves Bourne; Sophie Perrier; Linda Miallau; Phillippe Cantau; Eric Blanc; Michel Genevois; Alain Grossi; André Zenatti; Valérie Campanacci; Christian Cambillau

The first results of a medium-scale structural genomics program clearly demonstrate the value of using a medium-throughput crystallization approach based on a two-step procedure: a large screening step employing robotics, followed by manual or automated optimization of the crystallization conditions. The structural genomics program was based on cloning in the Gateway vectors pDEST17, introducing a long 21-residue tail at the N-terminus. So far, this tail has not appeared to hamper crystallization. In ten months, 25 proteins were subjected to crystallization; 13 yielded crystals, of which ten led to usable data sets and five to structures. Furthermore, the results using a robot dispensing 50-200 nl drops indicate that smaller protein samples can be used for crystallization. These still partial results might indicate present and future directions for those who have to make crucial choices concerning their crystallization platform in structural genomics programs.


Biochemical Journal | 2002

Control of domain swapping in bovine odorant-binding protein

Roberto Ramoni; Florence Vincent; Alison E. Ashcroft; Paolo Accornero; Stefano Grolli; Christel Valencia; Mariella Tegoni; Christian Cambillau

As revealed by the X-ray structure, bovine odorant-binding protein (OBPb) is a domain swapped dimer [Tegoni, Ramoni, Bignetti, Spinelli and Cambillau (1996) Nat. Struct. Biol. 3, 863-867; Bianchet, Bains, Petosi, Pevsner, Snyder, Monaco and Amzel (1996) Nat. Struct. Biol. 3, 934-939]. This contrasts with all known mammalian OBPs, which are monomers, and in particular with porcine OBP (OBPp), sharing 42.3% identity with OBPb. By the mechanism of domain swapping, monomers are proposed to evolve into dimers and oligomers, as observed in human prion. Comparison of bovine and porcine OBP sequences pointed at OBPp glycine 121, in the hinge linking the beta-barrel to the alpha-helix. The absence of this residue in OBPb might explain why the normal lipocalin beta-turn is not formed. In order to decipher the domain swapping determinants we have produced a mutant of OBPb in which a glycine residue was inserted after position 121, and a mutant of OBPp in which glycine 121 was deleted. The latter mutation did not result in dimerization, while OBPb-121Gly+ became monomeric, suggesting that domain swapping was reversed. Careful structural analysis revealed that besides the presence of a glycine in the hinge, the dimer interface formed by the C-termini and by the presence of the lipocalins conserved disulphide bridge may also control domain swapping.


Journal of the American Chemical Society | 2015

Fluorogenic squaraine dimers with polarity-sensitive folding as bright far-red probes for background-free bioimaging.

Iuliia A. Karpenko; Mayeul Collot; Ludovic Richert; Christel Valencia; Pascal Villa; Yves Mély; Marcel Hibert; Dominique Bonnet; Andrey S. Klymchenko

Polarity-sensitive fluorogenic dyes raised considerable attention because they can turn on their fluorescence after binding to biological targets, allowing background-free imaging. However, their brightness is limited, and they do not operate in the far-red region. Here, we present a new concept of fluorogenic dye based on a squaraine dimer that unfolds on changing environment from aqueous to organic and thus turns on its fluorescence. In aqueous media, all three newly synthesized dimers displayed a short wavelength band characteristic of an H-aggregate that was practically nonfluorescent, whereas in organic media, they displayed a strong fluorescence similar to that of the squaraine monomer. For the best dimer, which contained a pegylated squaraine core, we obtained a very high turn-on response (organic vs aqueous) up to 82-fold. Time-resolved studies confirmed the presence of nonfluorescent intramolecular H-aggregates that increased with the water content. To apply these fluorogenic dimers for targeted imaging, we grafted them to carbetocin, a ligand of the oxytocin G protein-coupled receptor. A strong receptor-specific signal was observed for all three conjugates at nanomolar concentrations. The probe derived from the core-pegylated squaraine showed the highest specificity to the target receptor together with minimal nonspecific binding to serum and lipid membranes. The obtained dimers can be considered as the brightest polarity-sensitive fluorogenic molecules reported to date, having ∼660,000 M(-1) cm(-1) extinction coefficient and up to 40% quantum yield, whereas far-red operation region enables both in vitro and in vivo applications. The proposed concept can be extended to other dye families and other membrane receptors, opening the route to new ultrabright fluorogenic dyes.


FEBS Letters | 2004

The crystal structure of the Escherichia coli lipocalin Blc suggests a possible role in phospholipid binding

Valérie Campanacci; Didier Nurizzo; Silvia Spinelli; Christel Valencia; Mariella Tegoni; Christian Cambillau

Lipocalins form a large multifunctional family of small proteins (15–25 kDa) first discovered in eukaryotes. More recently, several types of bacterial lipocalins have been reported, among which Blc from Escherichia coli is an outer membrane lipoprotein. As part of our structural genomics effort on proteins from E. coli, we have expressed, crystallized and solved the structure of Blc at 1.8 Å resolution using remote SAD with xenon. The structure of Blc, the first of a bacterial lipocalin, exhibits a classical fold formed by a β‐barrel and a α‐helix similar to that of the moth bilin binding protein. Its empty and open cavity, however, is too narrow to accommodate bilin, while the alkyl chains of two fatty acids or of a phospholipid could be readily modeled inside the cavity. Blc was reported to be expressed under stress conditions such as starvation or high osmolarity, during which the cell envelope suffers and requires maintenance. These data, together with our structural interpretation, suggest a role for Blc in storage or transport of lipids necessary for membrane repair or maintenance.


Journal of Biological Chemistry | 2003

The crystal structure of the Escherichia coli yfdW gene product reveals a New fold of two interlaced rings identifying a wide family of CoA transferases.

Arnaud Gruez; Véronique Roig-Zamboni; Christel Valencia; Valérie Campanacci; Christian Cambillau

Because of its toxicity, oxalate accumulation from amino acid catabolism leads to acute disorders in mammals. Gut microflora are therefore pivotal in maintaining a safe intestinal oxalate balance through oxalate degradation. Oxalate catabolism was first identified in Oxalobacter formigenes, a specialized, strictly anaerobic bacterium. Oxalate degradation was found to be performed successively by two enzymes, a formyl-CoA transferase (frc) and an oxalate decarboxylase (oxc). These two genes are present in several bacterial genomes including that of Escherichia coli. The frc ortholog in E. coli is yfdW, with which it shares 61% sequence identity. We have expressed the YfdW open reading frame product and solved its crystal structure in the apo-form and in complex with acetyl-CoA and with a mixture of acetyl-CoA and oxalate. YfdW exhibits a novel and spectacular fold in which two monomers assemble as interlaced rings, defining the CoA binding site at their interface. From the structure of the complex with acetyl-CoA and oxalate, we propose a putative formyl/oxalate transfer mechanism involving the conserved catalytic residue Asp169. The similarity of yfdW with bacterial orthologs (∼60% identity) and paralogs (∼20–30% identity) suggests that this new fold and parts of the CoA transfer mechanism are likely to be the hallmarks of a wide family of CoA transferases.


ChemBioChem | 2014

Red Fluorescent Turn‐On Ligands for Imaging and Quantifying G Protein‐Coupled Receptors in Living Cells

Iuliia A. Karpenko; Rémy Kreder; Christel Valencia; Pascal Villa; Christiane Mendre; Bernard Mouillac; Yves Mély; Marcel Hibert; Dominique Bonnet; Andrey S. Klymchenko

Classical fluorescence‐based approaches to monitor ligand–protein interactions are generally hampered by the background signal of unbound ligand, which must be removed by tedious washing steps. To overcome this major limitation, we report here the first red fluorescent turn‐on probes for a G protein‐coupled receptor (oxytocin receptor) at the surface of living cells. The peptide ligand carbetocin was conjugated to one of the best solvatochromic (fluorogenic) dyes, Nile Red, which turns on emission when reaching the hydrophobic environment of the receptor. We showed that the incorporation of hydrophilic octa(ethylene glycol) linker between the pharmacophore and the dye minimized nonspecific interaction of the probe with serum proteins and lipid membranes, thus ensuring receptor‐specific turn‐on response. The new ligand was successfully applied for background‐free imaging and quantification of oxytocin receptors in living cells.


Acta Crystallographica Section D-biological Crystallography | 2004

Structure of Escherichia Coli Yhdh, a Putative Quinone Oxidoreductase

Gerlind Sulzenbacher; Véronique Roig-Zamboni; Fabienne Pagot; Sacha Grisel; Aurelia Salomoni; Christel Valencia; Valérie Campanacci; Renaud Vincentelli; Mariella Tegoni; Hans Eklund; Christian Cambillau

As part of a structural genomics project on bacterial gene products of unknown function, the crystal structures of YhdH, a putative quinone oxidoreductase, and its complex with NADP have been determined at 2.25 and 2.6 A resolution, respectively. The overall fold of YhdH is very similar to that of alcohol dehydrogenases and quinone reductases despite its low sequence identity. The absence of any Zn ion indicates that YdhH is a putative quinone oxidoreductase. YhdH forms a homodimer, with each subunit composed of two domains: a catalytic domain and a coenzyme-binding domain. NADP is bound in a deep cleft formed between the two domains. Large conformational changes occur upon NADP binding, with the two domains closing up to each other and narrowing the NADP-binding cleft. Comparisons of the YdhH active site with those of the quinone oxidoreductases from Escherichia coli and Thermus thermophilus made it possible to identify essential conserved residues as being Asn41, Asp43, Asp64 and Arg318. The active-site size is very narrow and unless an induced fit occurs is accessible only to reagents the size of benzoquinone.


Journal of Molecular Biology | 2004

Crystal Structure of E.Coli Alcohol Dehydrogenase Yqhd: Evidence of a Covalently Modified Nadp Coenzyme

Gerlind Sulzenbacher; Karine Alvarez; Robert H. H. van den Heuvel; Cees Versluis; Silvia Spinelli; Valérie Campanacci; Christel Valencia; Christian Cambillau; Hans Eklund; Mariella Tegoni


Journal of Molecular Biology | 2004

Crystal Structure and Kinetics Identify Escherichia coli YdcW Gene Product as a Medium-chain Aldehyde Dehydrogenase

Arnaud Gruez; Véronique Roig-Zamboni; Sacha Grisel; Aurelia Salomoni; Christel Valencia; Valérie Campanacci; Mariella Tegoni; Christian Cambillau

Collaboration


Dive into the Christel Valencia's collaboration.

Top Co-Authors

Avatar

Christian Cambillau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Valérie Campanacci

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mariella Tegoni

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sacha Grisel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Silvia Spinelli

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurelia Salomoni

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Fabienne Pagot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gerlind Sulzenbacher

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Véronique Roig-Zamboni

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge