Christelle Gendrin
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christelle Gendrin.
Radiotherapy and Oncology | 2012
Christelle Gendrin; Hugo Furtado; Christoph Weber; Christoph Bloch; Michael Figl; Supriyanto Ardjo Pawiro; Helmar Bergmann; M. Stock; Gabor Fichtinger; Dietmar Georg; Wolfgang Birkfellner
Background and purpose In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. Materials and methods The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). Results The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. Conclusions We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible.
Medical Physics | 2011
Supriyanto Ardjo Pawiro; Primož Markelj; Franjo Pernuš; Christelle Gendrin; Michael Figl; Christoph Weber; Franz Kainberger; I. Nöbauer-Huhmann; H. Bergmeister; M. Stock; Dietmar Georg; Helmar Bergmann; Wolfgang Birkfellner
PURPOSE In this article, the authors propose a new gold standard data set for the validation of two-dimensional/three-dimensional (2D/3D) and 3D/3D image registration algorithms. METHODS A gold standard data set was produced using a fresh cadaver pig head with attached fiducial markers. The authors used several imaging modalities common in diagnostic imaging or radiotherapy, which include 64-slice computed tomography (CT), magnetic resonance imaging using T1, T2, and proton density sequences, and cone beam CT imaging data. Radiographic data were acquired using kilovoltage and megavoltage imaging techniques. The image information reflects both anatomy and reliable fiducial marker information and improves over existing data sets by the level of anatomical detail, image data quality, and soft-tissue content. The markers on the 3D and 2D image data were segmented using ANALYZE 10.0 (AnalyzeDirect, Inc., Kansas City, KN) and an in-house software. RESULTS The projection distance errors and the expected target registration errors over all the image data sets were found to be less than 2.71 and 1.88 mm, respectively. CONCLUSIONS The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D and 3D/3D registration algorithms for image guided therapy.
Medical Physics | 2009
Wolfgang Birkfellner; M. Stock; Michael Figl; Christelle Gendrin; Johann Hummel; Shuo Dong; Joachim Kettenbach; Dietmar Georg; Helmar Bergmann
In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearmans rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general.
Medical Physics | 2011
Christelle Gendrin; Primož Markelj; Supriyanto Ardjo Pawiro; Jakob Spoerk; Christoph Bloch; Christoph Weber; Michael Figl; Helmar Bergmann; Wolfgang Birkfellner; Boštjan Likar; Franjo Pernuš
PURPOSE A new gold standard data set for validation of 2D/3D registration based on a porcine cadaver head with attached fiducial markers was presented in the first part of this article. The advantage of this new phantom is the large amount of soft tissue, which simulates realistic conditions for registration. This article tests the performance of intensity- and gradient-based algorithms for 2D/3D registration using the new phantom data set. METHODS Intensity-based methods with four merit functions, namely, cross correlation, rank correlation, correlation ratio, and mutual information (MI), and two gradient-based algorithms, the backprojection gradient-based (BGB) registration method and the reconstruction gradient-based (RGB) registration method, were compared. Four volumes consisting of CBCT with two fields of view, 64 slice multidetector CT, and magnetic resonance-T1 weighted images were registered to a pair of kV x-ray images and a pair of MV images. A standardized evaluation methodology was employed. Targets were evenly spread over the volumes and 250 starting positions of the 3D volumes with initial displacements of up to 25 mm from the gold standard position were calculated. After the registration, the displacement from the gold standard was retrieved and the root mean square (RMS), mean, and standard deviation mean target registration errors (mTREs) over 250 registrations were derived. Additionally, the following merit properties were computed: Accuracy, capture range, number of minima, risk of nonconvergence, and distinctiveness of optimum for better comparison of the robustness of each merit. RESULTS Among the merit functions used for the intensity-based method, MI reached the best accuracy with an RMS mTRE down to 1.30 mm. Furthermore, it was the only merit function that could accurately register the CT to the kV x rays with the presence of tissue deformation. As for the gradient-based methods, BGB and RGB methods achieved subvoxel accuracy (RMS mTRE down to 0.56 and 0.70 mm, respectively). Overall, gradient-based similarity measures were found to be substantially more accurate than intensity-based methods and could cope with soft tissue deformation and enabled also accurate registrations of the MR-T1 volume to the kV x-ray image. CONCLUSIONS In this article, the authors demonstrate the usefulness of a new phantom image data set for the evaluation of 2D/3D registration methods, which featured soft tissue deformation. The authors evaluation shows that gradient-based methods are more accurate than intensity-based methods, especially when soft tissue deformation is present. However, the current nonoptimized implementations make them prohibitively slow for practical applications. On the other hand, the speed of the intensity-based method renders these more suitable for clinical use, while the accuracy is still competitive.
Zeitschrift Fur Medizinische Physik | 2012
Jakob Spoerk; Christelle Gendrin; Christoph Weber; Michael Figl; Supriyanto Ardjo Pawiro; Hugo Furtado; Daniella Fabri; Christoph Bloch; Helmar Bergmann; Eduard Gröller; Wolfgang Birkfellner
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512×512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches - namely so-called wobbled splatting - to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT.
Physics in Medicine and Biology | 2010
Michael Figl; Christoph Bloch; Christelle Gendrin; Christoph Weber; Supriyanto Ardjo Pawiro; Johann Hummel; Primož Markelj; Franjo Pernuš; Helmar Bergmann; Wolfgang Birkfellner
A growing number of clinical applications using 2D/3D registration have been presented recently. Usually, a digitally reconstructed radiograph is compared iteratively to an x-ray image of the known projection geometry until a match is achieved, thus providing six degrees of freedom of rigid motion which can be used for patient setup in image-guided radiation therapy or computer-assisted interventions. Recently, stochastic rank correlation, a merit function based on Spearmans rank correlation coefficient, was presented as a merit function especially suitable for 2D/3D registration. The advantage of this measure is its robustness against variations in image histogram content and its wide convergence range. The considerable computational expense of computing an ordered rank list is avoided here by comparing randomly chosen subsets of the DRR and reference x-ray. In this work, we show that it is possible to omit the sorting step and to compute the rank correlation coefficient of the full image content as fast as conventional merit functions. Our evaluation of a well-calibrated cadaver phantom also confirms that rank correlation-type merit functions give the most accurate results if large differences in the histogram content for the DRR and the x-ray image are present.
Proceedings of SPIE | 2010
Supriyanto Ardjo Pawiro; Primoz Markelj; Christelle Gendrin; Michael Figl; M. Stock; Christoph Bloch; Christoph Weber; Ewald Unger; Iris Nöbauer; Franz Kainberger; Helga Bergmeister; Dietmar Georg; Helmar Bergmann; Wolfgang Birkfellner
In this paper, we propose a new gold standard data set for the validation of 2D/3D image registration algorithms for image guided radiotherapy. A gold standard data set was calculated using a pig head with attached fiducial markers. We used several imaging modalities common in diagnostic imaging or radiotherapy which include 64-slice computed tomography (CT), magnetic resonance imaging (MRI) using T1, T2 and proton density (PD) sequences, and cone beam CT (CBCT) imaging data. Radiographic data were acquired using kilovoltage (kV) and megavoltage (MV) imaging techniques. The image information reflects both anatomy and reliable fiducial marker information, and improves over existing data sets by the level of anatomical detail and image data quality. The markers of three dimensional (3D) and two dimensional (2D) images were segmented using Analyze 9.0 (AnalyzeDirect, Inc) and an in-house software. The projection distance errors (PDE) and the expected target registration errors (TRE) over all the image data sets were found to be less than 1.7 mm and 1.3 mm, respectively. The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D registration algorithms for image guided therapy.
Proceedings of SPIE | 2012
Hugo Furtado; Christelle Gendrin; Christoph Bloch; Jakob Spoerk; Supriyanto Ardjo Pawiro; Christoph Weber; Michael Figl; M. Stock; Dietmar Georg; Helmar Bergmann; Wolfgang Birkfellner
Organ motion during radiotherapy is one of causes of uncertainty in dose delivery. To cope with this, the planned target volume (PTV) has to be larger than needed to guarantee full tumor irradiation. Existing methods deal with the problem by performing tumor tracking using implanted fiducial markers or magnetic sensors. In this work, we investigate the feasibility of using x-ray based real time 2D/3D registration for non-invasive tumor motion tracking during radiotherapy. Our method uses purely intensity based techniques, thus avoiding markers or fiducials. X-rays are acquired during treatment at a rate of 5.4Hz. We iteratively compare each x-ray with a set of digitally reconstructed radiographs (DRR) generated from the planning volume dataset, finding the optimal match between the x-ray and one of the DRRs. The DRRs are generated using a ray-casting algorithm, implemented using general purpose computation on graphics hardware (GPGPU) programming techniques using CUDA for greater performance. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the PTV. The phantom motion is measured with an rms error of 2.1 mm and mean registration time is 220 ms. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is seen. Mean registration time is always under 105 ms which is well suited for our purposes. These results demonstrate that real-time organ motion monitoring using image based markerless registration is feasible.
Proceedings of SPIE | 2010
Christelle Gendrin; Jakob Spoerk; Christoph Bloch; Supriyanto Ardjo Pawiro; Christoph Weber; Michael Figl; Primoz Markelj; Franjo Pernuš; Dietmar Georg; Helmar Bergmann; Wolfgang Birkfellner
Nowadays, radiation therapy systems incorporate kV imaging units which allow for the real-time acquisition of intra-fractional X-ray images of the patient with high details and contrast. An application of this technology is tumor motion monitoring during irradiation. For tumor tracking, implanted markers or position sensors are used which requires an intervention. 2D/3D intensity based registration is an alternative, non-invasive method but the procedure must be accelerate to the update rate of the device, which lies in the range of 5 Hz. In this paper we investigate fast CT to a single kV X-ray 2D/3D image registration using a new porcine reference phantom with seven implanted fiducial markers. Several parameters influencing the speed and accuracy of the registrations are investigated. First, four intensity based merit functions, namely Cross-Correlation, Rank Correlation, Mutual Information and Correlation Ratio, are compared. Secondly, wobbled splatting and ray casting rendering techniques are implemented on the GPU and the influence of each algorithm on the performance of 2D/3D registration is evaluated. Rendering times for a single DRR of 20 ms were achieved. Different thresholds of the CT volume were also examined for rendering to find the setting that achieves the best possible correspondence with the X-ray images. Fast registrations below 4 s became possible with an inplane accuracy down to 0.8 mm.
Proceedings of SPIE | 2016
Hugo Furtado; Christelle Gendrin; Jakob Spoerk; Elisabeth Steiner; Tracy S. A. Underwood; Thomas Kuenzler; Dietmar Georg; Wolfgang Birkfellner
Radiotherapy treatments have changed at a tremendously rapid pace. Dose delivered to the tumor has escalated while organs at risk (OARs) are better spared. The impact of moving tumors during dose delivery has become higher due to very steep dose gradients. Intra-fractional tumor motion has to be managed adequately to reduce errors in dose delivery. For tumors with large motion such as tumors in the lung, tracking is an approach that can reduce position uncertainty. Tumor tracking approaches range from purely image intensity based techniques to motion estimation based on surrogate tracking. Research efforts are often based on custom designed software platforms which take too much time and effort to develop. To address this challenge we have developed an open software platform especially focusing on tumor motion management. FLIRT is a freely available open-source software platform. The core method for tumor tracking is purely intensity based 2D/3D registration. The platform is written in C++ using the Qt framework for the user interface. The performance critical methods are implemented on the graphics processor using the CUDA extension. One registration can be as fast as 90ms (11Hz). This is suitable to track tumors moving due to respiration (~0.3Hz) or heartbeat (~1Hz). Apart from focusing on high performance, the platform is designed to be flexible and easy to use. Current use cases range from tracking feasibility studies, patient positioning and method validation. Such a framework has the potential of enabling the research community to rapidly perform patient studies or try new methods.