Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christer Holmlund is active.

Publication


Featured researches published by Christer Holmlund.


Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII | 2011

Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications

Heikki Saari; Ismo Pellikka; Liisa Pesonen; Sakari Tuominen; Jan Heikkilä; Christer Holmlund; Jussi Mäkynen; Kai Ojala; Tapani Antila

VTT Technical Research Centre of Finland has developed a Fabry-Perot Interferometer (FPI) based hyperspectral imager compatible with the light weight UAV platforms. The concept of the hyperspectral imager has been published in the SPIE Proc. 7474 and 7668. In forest and agriculture applications the recording of multispectral images at a few wavelength bands is in most cases adequate. The possibility to calculate a digital elevation model of the forest area and crop fields provides means to estimate the biomass and perform forest inventory. The full UAS multispectral imaging system will consist of a high resolution false color imager and a FPI based hyperspectral imager which can be used at resolutions from VGA (480 x 640 pixels) up to 5 Mpix at wavelength range 500 - 900 nm at user selectable spectral resolutions in the range 10...40 nm @ FWHM. The resolution is determined by the order at which the Fabry- Perot interferometer is used. The overlap between successive images of the false color camera is 70...80% which makes it possible to calculate the digital elevation model of the target area. The field of view of the false color camera is typically 80 degrees and the ground pixel size at 150 m flying altitude is around 5 cm. The field of view of the hyperspectral imager is presently is 26 x 36 degrees and ground pixel size at 150 m flying altitude is around 3.5 cm. The UAS system has been tried in summer 2011 in Southern Finland for the forest and agricultural areas. During the first test campaigns the false color camera and hyperspectral imager were flown over the target areas at separate flights. The design and calibration of the hyperspectral imager will be shortly explained. The test flight campaigns on forest and crop fields and their preliminary results are also presented in this paper.


Sensors, Systems, and Next-Generation Satellites XIII | 2009

Novel miniaturized hyperspectral sensor for UAV and space applications

Heikki Saari; Ville-Veikko Aallos; Altti Akujärvi; Tapani Antila; Christer Holmlund; Uula Kantojärvi; Jussi Mäkynen; Jyrki Ollila

In many hyperspectral applications it is beneficial to produce 2D spatial images with a single exposure at a few selected wavelength bands instead of 1D spatial and all spectral band images like in push-broom instruments. VTT has developed a new concept based on the Piezo actuated Fabry-Perot Interferometer to enable recording of 2D spatial images at the selected wavelength bands simultaneously. The sensor size is compatible with light weight UAV platforms. In our spectrometer the multiple orders of the Fabry-Perot Interferometer are used at the same time matched to the sensitivities of a multispectral RGB-type image sensor channels. We have built prototypes of the new spectrograph fitting inside of a 40 mm x 40 mm x 20 mm envelope and with a mass less than 50 g. The operational wavelength range of built prototypes can be tuned in the range 400 - 1100 nm and the spectral resolution is in the range 5 - 10 nm @ FWHM. Presently the spatial resolution is 480 x 750 pixels but it can be increased simply by changing the image sensor. The hyperspectral imager records simultaneously a 2D image of the scenery at three narrow wavelength bands determined by the selected three orders of the Fabry-Perot Interferometer which depend on the air gap between the mirrors of the Fabry-Perot Cavity. The new sensor can be applied on UAV, aircraft, and other platforms requiring small volume, mass and power consumption. The new low cost hyperspectral imager can be used also in many industrial and medical applications.


Electro-Optical Remote Sensing, Photonic Technologies, and Applications V | 2011

Unmanned aerial vehicle (UAV) operated megapixel spectral camera

Jussi Mäkynen; Christer Holmlund; Heikki Saari; Kai Ojala; Tapani Antila

VTT Technical Research Centre of Finland has developed a lightweight Fabry-Perot interferometer based hyperspectral imager weighting only 400 g which makes it compatible with various small UAV platforms. The concept of the hyperspectral imager has been published in SPIE Proc. 74741 and 76682. This UAV spectral imager is capable of recording 5 Mpix multispectral data in the wavelength range of 500 - 900 nm at resolutions of 10-40 nm, Full-Width-Half-Maximum (FWHM). An internal memory buffer allows 16 Mpix of image data to be stored during one image burst. The user can configure the system to take either three 5 Mpix images or up to 54 VGA resolution images with each triggering. Each image contains data from one, two or three wavelength bands which can be separated during post processing. This allows a maximum of 9 spectral bands to be stored in high spatial resolution mode or up to 162 spectral bands in VGA-mode during each image burst. Image data is stored in a compact flash memory card which provides the mass storage for the imager. The field of view of the system is 26° × 36° and the ground pixel size at 150 m flying altitude is around 40 mm in high-resolution mode. The design, calibration and test flight results will be presented.


IEEE Transactions on Geoscience and Remote Sensing | 2016

Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV)

Eija Honkavaara; Matti Eskelinen; Ilkka Pölönen; Heikki Saari; Harri Ojanen; Rami Mannila; Christer Holmlund; Teemu Hakala; Paula Litkey; Tomi Rosnell; Niko Viljanen; Merja Pulkkanen

Miniaturized hyperspectral imaging sensors are becoming available to small unmanned airborne vehicle (UAV) platforms. Imaging concepts based on frame format offer an attractive alternative to conventional hyperspectral pushbroom scanners because they enable enhanced processing and interpretation potential by allowing for acquisition of the 3-D geometry of the object and multiple object views together with the hyperspectral reflectance signatures. The objective of this investigation was to study the performance of novel visible and near-infrared (VNIR) and short-wave infrared (SWIR) hyperspectral frame cameras based on a tunable Fabry-Pérot interferometer (FPI) in measuring a 3-D digital surface model and the surface moisture of a peat production area. UAV image blocks were captured with ground sample distances (GSDs) of 15, 9.5, and 2.5 cm with the SWIR, VNIR, and consumer RGB cameras, respectively. Georeferencing showed consistent behavior, with accuracy levels better than GSD for the FPI cameras. The best accuracy in moisture estimation was obtained when using the reflectance difference of the SWIR band at 1246 nm and of the VNIR band at 859 nm, which gave a root mean square error (rmse) of 5.21 pp (pp is the mass fraction in percentage points) and a normalized rmse of 7.61%. The results are encouraging, indicating that UAV-based remote sensing could significantly improve the efficiency and environmental safety aspects of peat production.


Sensors, Systems, and Next-Generation Satellites XVII | 2013

Miniaturized hyperspectral imager calibration and UAV flight campaigns

Heikki Saari; Ilkka Pölönen; Heikki Salo; Eija Honkavaara; Teemu Hakala; Christer Holmlund; Jussi Mäkynen; Rami Mannila; Tapani Antila; Altti Akujärvi

VTT Technical Research Centre of Finland has developed Tunable Fabry-Perot Interferometer (FPI) based miniaturized hyperspectral imager which can be operated from light weight Unmanned Aerial Vehicles (UAV). The concept of the hyperspectral imager has been published in the SPIE Proc. 7474, 8174 and 8374. This instrument requires dedicated laboratory and on-board calibration procedures which are described. During summer 2012 extensive UAV Hyperspectral imaging campaigns in the wavelength range 400 - 900 nm at resolution range 10 - 40 nm @ FWHM were performed to study forest inventory, crop biomass and nitrogen distributions and environmental status of natural water applications. The instrument includes spectral band limiting filters which can be used for the on-board wavelength scale calibration by scanning the FPI pass band center wavelength through the low and high edge of the operational wavelength band. The procedure and results of the calibration tests will be presented. A short summary of the performed extensive UAV imaging campaign during summer 2012 will be presented.


Proceedings of SPIE | 2012

Multi- and hyperspectral UAV imaging system for forest and agriculture applications

Jussi Mäkynen; Heikki Saari; Christer Holmlund; Rami Mannila; Tapani Antila

VTT Technical Research Centre of Finland has developed a Fabry-Perot Interferometer (FPI) based hyperspectral imager compatible with light weight UAV (Unmanned Aerial Vehicle) platforms (SPIE Proc. 74741, 8186B2). The FPI based hyperspectral imager was used in a UAV imaging campaign for forest and agriculture tests during the summer 2011 (SPIE Proc. 81743). During these tests high spatial resolution Color-Infrared (CIR) images and hyperspectral images were recorded on separate flights. The spectral bands of the CIR camera were 500 - 580 nm for the green band, 580 - 700 nm for the red band and 700 - 1000 nm for the near infrared band. For the summer 2012 flight campaign a new hyperspectral imager is currently being developed. A custom made CIR camera will also be used. The system which includes both the high spatial resolution Color-Infrared camera and a light weight hyperspectral imager can provide all necessary data with just one UAV flight over the target area. The new UAV imaging system contains a 4 Megapixel CIR camera which is used for the generation of the digital surface models and CIR mosaics. The hyperspectral data can be recorded in the wavelength range 500 - 900 nm at a resolution of 10 - 30 nm at FWHM. The resolution can be selected from approximate values of 10, 15, 20 or 30 nm at FWHM.


Proceedings of SPIE | 2010

NOVEL HYPERSPECTRAL IMAGER FOR LIGHTWEIGHT UAVS

Heikki Saari; Ville-Veikko Aallos; Christer Holmlund; Jussi Mäkynen; Bavo Delaure; Kris Nackaerts; Bart Michiels

VTT Technical Research Centre of Finland has developed a new miniaturized staring hyperspectral imager with a weight of 350 g making the system compatible with lightweight UAS platforms. The instrument is able to record 2D spatial images at the selected wavelength bands simultaneously. The concept of the hyperspectral imager has been published in the SPIE Proc. 74741. The operational wavelength range of the imager can be tuned in the range 400 - 1100 nm and spectral resolution is in the range 5 - 10 nm @ FWHM. Presently the spatial resolution is 480 × 750 pixels but it can be increased simply by changing the image sensor. The field of view of the system is 20 × 30 degrees and ground pixel size at 100 m flying altitude is around 7.5 cm. The system contains batteries, image acquisition control system and memory for the image data. It can operate autonomously recording hyperspectral data cubes continuously or controlled by the autopilot system of the UAS. The new hyperspectral imager prototype was first tried in co-operation with the Flemish Institute for Technological Research (VITO) on their UAS helicopter. The instrument was configured for the spectral range 500 - 900 nm selected for the vegetation and natural water monitoring applications. The design of the UAS hyperspectral imager and its characterization results together with the analysis of the spectral data from first test flights will be presented.


Proceedings of SPIE | 2012

Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer

Jarkko Antila; Rami Mannila; Uula Kantojärvi; Christer Holmlund; Anna Rissanen; Ismo Näkki; Jyrki Ollila; Heikki Saari

The trend in the development of single-point spectrometric sensors is miniaturization, cost reduction and increase of functionality and versatility. MEMS Fabry-Perot interferometers (FPI) have been proven to meet many of these requirements in the form of miniaturized spectrometer modules and tuneable light sources. Recent development of MEMS FPI devices based on ALD thin film structures potentially addresses all of these main trends. In this paper we present a device and first measurement results of a small imaging spectrometer utilizing a 1.5 mm tuneable MEMS FPI filter working in the visible range of 430-580 nm. The construction of the instrument and the properties of the tuneable filter are explained especially from imaging requirements point of view.


Sensors, Systems, and Next-Generation Satellites XVIII | 2014

Short-wave infrared (SWIR) spectral imager based on Fabry-Perot interferometer for remote sensing

Rami Mannila; Christer Holmlund; Harri Ojanen; Antti Näsilä; Heikki Saari

VTT Technical Research Centre of Finland has developed a spectral imager for short-wave infrared (SWIR) wavelength range. The spectral imager is based on a tunable Fabry-Perot interferometer (FPI) accompanied by a commercial InGaAs Camera. The FPI consists of two dielectric coated mirrors separated by a tunable air gap. Tuning of the air gap tunes also transmitted wavelength and therefore FPI acts as a tunable band bass filter. The FPI is piezo-actuated and it uses three piezo-actuators in a closed capacitive feedback loop for air gap tuning. The FPI has multiple order transmission bands, which limit free spectral range. Therefore spectral imager contains two FPI in a stack, to make possible to cover spectral range of 1000 – 1700 nm. However, in the first tests imager was used with one FPI and spectral range was limited to 1100-1600 nm. The spectral resolution of the imager is approximately 15 nm (FWHM). Field of view (FOV) across the flight direction is 30 deg. Imaging resolution of the spectral imager is 256 x 320 pixels. The focal length of the optics is 12 mm and F-number is 3.2. This imager was tested in summer 2014 in an unmanned aerial vehicle (UAV) and therefore a size and a mass of the imager were critical. Total mass of the imager is approximately 1200 grams. In test campaign the spectral imager will be used for forest and agricultural imaging. In future, because results of the UAV test flights are promising, this technology can be applied to satellite applications also.


Proceedings of SPIE | 2014

Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR

Uula Kantojärvi; Aapo Varpula; Tapani Antila; Christer Holmlund; Jussi Mäkynen; Antti Näsilä; Rami Mannila; Anna Rissanen; Jarkko Antila; Rolf Disch; Torsten Waldmann

VTT has developed Fabry-Pérot Interferometers (FPI) for visible and infrared wavelengths since 90’s. Here we present two new platforms for mid-infrared gas spectroscopy having a large optical aperture to provide high optical throughput but still enabling miniaturized instrument size. First platform is a tunable filter that replaces a traditional filter wheel, which operates between wavelengths of 4-5 um. Second platform is for correlation spectroscopy where the interferometer provides a comb-like transmission pattern mimicking absorption of diatomic molecules at the wavelength range of 4.7-4.8 um. The Bragg mirrors have 2-4 thin layers of polysilicon and silicon oxide.

Collaboration


Dive into the Christer Holmlund's collaboration.

Top Co-Authors

Avatar

Heikki Saari

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Jussi Mäkynen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Rami Mannila

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Tapani Antila

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Jarkko Antila

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Antti Näsilä

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Harri Ojanen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Uula Kantojärvi

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Jyrki Ollila

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Ville-Veikko Aallos

VTT Technical Research Centre of Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge