Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Behl is active.

Publication


Featured researches published by Christian Behl.


Nature Reviews Neuroscience | 2002

Oestrogen as a neuroprotective hormone.

Christian Behl

In addition to its role as a sex hormone, oestrogen affects the structure and function of the nervous system. Oestrogen receptors are expressed in brain regions that are involved in sex differentiation and maturation. But in addition to its well-known effects, oestrogen also has important neuroprotective actions that are both dependent and independent of a nuclear oestrogen-receptor activity. Furthermore, oestrogen can interact with neuroprotective intracellular signalling pathways and is itself a neuroprotective antioxidant. Understanding the mechanisms of oestrogen action will be crucial to determine its potential as a therapeutic agent, particularly in the elderly.


Progress in Neurobiology | 1999

ALZHEIMER'S DISEASE AND OXIDATIVE STRESS : IMPLICATIONS FOR NOVEL THERAPEUTIC APPROACHES

Christian Behl

Alzheimers disease (AD) is a progressive neurodegenerative disorder with a deadly outcome. AD is the leading cause of senile dementia and although the pathogenesis of this disorder is not known, various hypotheses have been developed based on experimental data accumulated since the initial description of this disease by Alois Alzheimer about 90 years ago. Most approaches to explain the pathogenesis of AD focus on its two histopathological hallmarks, the amyloid beta protein- (A(beta)-) loaded senile plaques and the neurofibrillary tangles, which consist of the filament protein tau. Various lines of genetic evidence support a central role of A(beta) in the pathogenesis of AD and an increasing number of studies show that oxidation reactions occur in AD and that A(beta) may be one molecular link between oxidative stress and AD-associated neuronal cell death. A(beta) itself can be neurotoxic and can induce oxidative stress in cultivated neurons. A(beta) is, therefore, one player in the concert of oxidative reactions that challenge neurons besides inflammatory reactions which are also associated with the AD pathology. Consequently, antioxidant approaches for the prevention and therapy of AD are of central interest. Experimental as well as clinical data show that lipophilic antioxidants, such as vitamin E and estrogens, are neuroprotective and may help patients suffering from AD. While an additional intensive elucidation of the cellular and molecular events of neuronal cell death in AD will, ultimately, lead to novel drug targets, various antioxidants are already available for a further exploitation of their preventive and therapeutic potential. reserved


The EMBO Journal | 2009

Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3

Martin Gamerdinger; Parvana Hajieva; A Murat Kaya; Uwe Wolfrum; F. Ulrich Hartl; Christian Behl

The Hsc/Hsp70 co‐chaperones of the BAG (Bcl‐2‐associated athanogene) protein family are modulators of protein quality control. We examined the specific roles of BAG1 and BAG3 in protein degradation during the aging process. We show that BAG1 and BAG3 regulate proteasomal and macroautophagic pathways, respectively, for the degradation of polyubiquitinated proteins. Moreover, using models of cellular aging, we find that a switch from BAG1 to BAG3 determines that aged cells use more intensively the macroautophagic system for turnover of polyubiquitinated proteins. This increased macroautophagic flux is regulated by BAG3 in concert with the ubiquitin‐binding protein p62/SQSTM1. The BAG3/BAG1 ratio is also elevated in neurons during aging of the rodent brain, where, consistent with a higher macroautophagy activity, we find increased levels of the autophagosomal marker LC3‐II as well as a higher cathepsin activity. We conclude that the BAG3‐mediated recruitment of the macroautophagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro‐oxidant and aggregation‐prone milieu characteristic of aging.


Free Radical Biology and Medicine | 2002

Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach

Christian Behl; Bernd Moosmann

Various neurodegenerative disorders and syndromes are associated with oxidative stress. The deleterious consequences of excessive oxidations and the pathophysiological role of reactive oxygen species (ROS) have been intensively studied in Alzheimers disease (AD). Neuronal cell dysfunction and oxidative cell death caused by the AD-associated amyloid beta protein may causally contribute to the pathogenesis of AD. Antioxidants that prevent the detrimental consequences of ROS are consequently considered to be a promising approach to neuroprotection. While there is ample experimental evidence demonstrating neuroprotective activities of antioxidants in vitro, the clinical evidence that antioxidant compounds act as protective drugs is still relatively scarce. Nevertheless, antioxidants constitute a major part of the panel of clinical and experimental drugs that are currently considered for AD prevention and therapy. Here, focus is put mainly on phenolic antioxidant structures that belong to the class of direct antioxidants. Experimental and clinical evidence for the neuroprotective potential of alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) is shortly summarized and an outlook is given on possible novel antioxidant lead structures with improved pharmacological features.


Journal of Neurochemistry | 2002

Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1

Giovanni Marsicano; Bernd Moosmann; Heike Hermann; Beat Lutz; Christian Behl

Neuroprotective effects have been described for many can‐nabinoids in several neurotoxicity models. However, the exact mechanisms have not been clearly understood yet. In the present study, antioxidant neuroprotective effects of cannabinoids and the involvement of the cannabinoid receptor 1 (CB1) were analysed in detail employing cell‐free biochemical assays and cultured cells. As it was reported for oestrogens that the phenolic group is a lead structure for antioxidant neuroprotective effects, eight compounds were classified into three groups. Group A: phenolic compounds that do not bind to CB1. Group B: non‐phenolic compounds that bind to CB1. Group C: phenolic compounds that bind to CB1. In the biochemical assays employed, a requirement of the phenolic lead structure for antioxidant activity was shown. The effects paralleled the protective potential of group A and C compounds against oxidative neuronal cell death using the mouse hippocampal HT22 cell line and rat primary cerebellar cell cultures. To elucidate the role of CB1 in neuroprotection, we established stably transfected HT22 cells containing CB1 and compared the protective potential of cannabinoids with that observed in the control transfected HT22 cell line. Furthermore, oxidative stress experiments were performed in cultured cerebellar granule cells, which were derived either from CB1 knock‐out mice or from control wild‐type littermates. The results strongly suggest that CB1 is not involved in the cellular antioxidant neuroprotective effects of cannabinoids.


Journal of Biological Chemistry | 1999

Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappaB.

Stefanie Heck; F. Lezoualc'h; Stefanie Engert; Christian Behl

The role of insulin-like growth factor 1 (IGF-1) for the treatment of neurodegenerative disorders, such as Alzheimer’s disease, has recently gained attention. The present study demonstrates that IGF-1 promotes the survival of rat primary cerebellar neurons and of immortalized hypothalamic rat GT1–7 cells after challenge with oxidative stress induced by hydrogen peroxide (H2O2). Neuroprotective concentrations of IGF-1 specifically induce the transcriptional activity and the DNA binding activity of nuclear factor κB (NF-κB), a transcription factor that has been suggested to play a neuroprotective role. This induction is associated with increased nuclear translocation of the p65 subunit of NF-κB and with degradation of the NF-κB inhibitory protein IκBα. IGF-1-mediated protection of GT1–7 cells against oxidative challenges was mimicked by overexpression of the NF-κB subunit c-Rel. Partial inhibition of NF-κB baseline activity by overexpression of a dominant-negative IκBα mutant enhanced the toxicity of H2O2 in GT1–7 cells. The pathway by which IGF-1 promotes neuronal survival and activation of NF-κB involves the phosphoinositol (PI) 3-kinase, because both effects of IGF-1 are blocked by LY294002 and wortmannin, two specific PI 3-kinase inhibitors. Taken together, our results provide evidence for a novel molecular link between IGF-1-mediated neuroprotection and induction of NF-κB that is dependent on the PI 3-kinase pathway.


Trends in Cell Biology | 2016

Ubiquitin-Dependent And Independent Signals In Selective Autophagy

Aliaksandr Khaminets; Christian Behl; Ivan Dikic

Selective autophagy regulates the abundance of specific cellular components via a specialized arsenal of factors, termed autophagy receptors, that target protein complexes, aggregates, and whole organelles into lysosomes. Autophagy receptors bind to LC3/GABARAP proteins on phagophore and autophagosome membranes, and recognize signals on cargoes to deliver them to autophagy. Ubiquitin (Ub), a well-known signal for the degradation of polypeptides in the proteasome, also plays an important role in the recognition of cargoes destined for selective autophagy. In addition, a variety of cargoes are committed to selective autophagy pathways by Ub-independent mechanisms employing protein-protein interaction motifs, Ub-like modifiers, and sugar- or lipid-based signals. In this article we summarize Ub-dependent and independent selective autophagy pathways, and discuss regulatory mechanisms and challenges for future studies.


Expert Opinion on Investigational Drugs | 2002

Antioxidants as treatment for neurodegenerative disorders

Bernd Moosmann; Christian Behl

Oxidative stress is a ubiquitously observed hallmark of neurodegenerative disorders. Neuronal cell dysfunction and cell death due to oxidative stress may causally contribute to the pathogenesis of progressive neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease, as well as acute syndromes of neurodegeneration, such as ischaemic and haemorrhagic stroke. Neuroprotective antioxidants are considered a promising approach to slowing the progression and limiting the extent of neuronal cell loss in these disorders. The clinical evidence demonstrating that antioxidant compounds can act as protective drugs in neurodegenerative disease, however, is still relatively scarce. In the following review, the available data from clinical, animal and cell biological studies regarding the role of antioxidant neuroprotection in progressive neurodegenerative disease will be summarised, focussing particularly on Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. The general complications in developing potent neuroprotective antioxidant drugs directed against these long-term degenerative conditions will also be discussed. The major challenges for drug development are the slow kinetics of disease progression, the unsolved mechanistic questions concerning the final causalities of cell death, the necessity to attain an effective permeation of the blood–brain barrier and the need to reduce the high concentrations currently required to evoke protective effects in cellular and animal model systems. Finally, an outlook as to which direction antioxidant drug development and clinical practice may be leading to in the near future will be provided.


EMBO Reports | 2011

BAG3 mediates chaperone‐based aggresome‐targeting and selective autophagy of misfolded proteins

Martin Gamerdinger; A Murat Kaya; Uwe Wolfrum; Albrecht M. Clement; Christian Behl

Increasing evidence indicates the existence of selective autophagy pathways, but the manner in which substrates are recognized and targeted to the autophagy system is poorly understood. One strategy is transport of a particular substrate to the aggresome, a perinuclear compartment with high autophagic activity. In this paper, we identify a new cellular pathway that uses the specificity of heat‐shock protein 70 (Hsp70) to misfolded proteins as the basis for aggresome‐targeting and autophagic degradation. This pathway is regulated by the stress‐induced co‐chaperone Bcl‐2‐associated athanogene 3 (BAG3), which interacts with the microtubule‐motor dynein and selectively directs Hsp70 substrates to the motor and thereby to the aggresome. Notably, aggresome‐targeting by BAG3 is distinct from previously described mechanisms, as it does not depend on substrate ubiquitination.


Biological Chemistry | 2002

Oxidative nerve cell death in Alzheimer's disease and stroke: Antioxidants as neuroprotective compounds

Christian Behl; Bernd Moosmann

Abstract Many neurodegenerative disorders and syndromes are associated with an excessive generation of reactive oxygen species (ROS) and oxidative stress. The pathways to nerve cell death induced by diverse potential neurotoxins such as peptides, excitatory amino acids, cytokines or synthetic drugs commonly share oxidative downstream processes, which can cause either an acute oxidative destruction or activate secondary events leading to apoptosis. The pathophysiological role of ROS has been intensively studied in in vitro and in vivo models of chronic neurodegenerative diseases such as Alzheimers disease (AD) and of syndromes associated with rapid nerve cell loss as occuring in stroke. In AD, oxidative neuronal cell dysfunction and cell death caused by protofibrils and aggregates of the ADassociated amyloid β protein (Aβ) may causally contribute to pathogenesis and progression. ROS and reactive nitrogen species also take part in the complex cascade of events and the detrimental effects occuring during ischemia and reperfusion in stroke. Direct antioxidants such as chainbreaking free radical scavengers can prevent oxidative nerve cell death. Although there is ample experimental evidence demonstrating neuroprotective activities of direct antioxidants in vitro, the clinical evidence for antioxidant compounds to act as protective drugs is relatively scarce. Here, the neuroprotective potential of antioxidant phenolic structures including αtocopherol (vitamin E) and 17βestradiol (estrogen) in vitro is summarized. In addition, the antioxidant and cytoprotective activities of lipophilic tyrosine and tryptophancontaining structures are discussed. Finally, an outlook is given on the neuroprotective potential of aromatic amines and imines, which may comprise novel lead structures for antioxidant drug design.

Collaboration


Dive into the Christian Behl's collaboration.

Top Co-Authors

Avatar

Bernd Moosmann

Sanford-Burnham Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge