Christine Ziegler
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Ziegler.
Biochimica et Biophysica Acta | 2011
Lucy R. Forrest; Reinhard Krämer; Christine Ziegler
Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling.
Nature | 2009
Susanne Ressl; Anke C. Terwisscha van Scheltinga; Clemens Vonrhein; Vera Ott; Christine Ziegler
Osmoregulated transporters sense intracellular osmotic pressure and respond to hyperosmotic stress by accumulation of osmolytes to restore normal hydration levels. Here we report the determination of the X-ray structure of a member of the family of betaine/choline/carnitine transporters, the Na+-coupled symporter BetP from Corynebacterium glutamicum, which is a highly effective osmoregulated uptake system for glycine betaine. Glycine betaine is bound in a tryptophan box occluded from both sides of the membrane with aromatic side chains lining the transport pathway. BetP has the same overall fold as three unrelated Na+-coupled symporters. Whereas these are crystallized in either the outward-facing or the inward-facing conformation, the BetP structure reveals a unique intermediate conformation in the Na+-coupled transport cycle. The trimeric architecture of BetP and the break in three-fold symmetry by the osmosensing C-terminal helices suggest a regulatory mechanism of Na+-coupled osmolyte transport to counteract osmotic stress.
Molecular Microbiology | 2010
Christine Ziegler; Erhard Bremer; Reinhard Krämer
Increases in the environmental osmolarity are key determinants for the growth of microorganisms. To ensure a physiologically acceptable level of cellular hydration and turgor at high osmolarity, many bacteria accumulate compatible solutes. Osmotically controlled uptake systems allow the scavenging of these compounds from scarce environmental sources as effective osmoprotectants. A number of these systems belong to the BCCT family (betaine‐choline‐carnitine‐transporter), sodium‐ or proton‐coupled transporters (e.g. BetP and BetT respectively) that are ubiquitous in microorganisms. The BCCT family also contains CaiT, an l‐carnitine/γ‐butyrobetaine antiporter that is not involved in osmotic stress responses. The glycine betaine transporter BetP from Corynebacterium glutamicum is a representative for osmoregulated symporters of the BCCT family and functions both as an osmosensor and osmoregulator. The crystal structure of BetP in an occluded conformation in complex with its substrate glycine betaine and two crystal structures of CaiT in an inward‐facing open conformation in complex with l‐carnitine and γ‐butyrobetaine were reported recently. These structures and the wealth of biochemical data on the activity control of BetP in response to osmotic stress enable a correlation between the sensing of osmotic stress by a transporter protein with the ensuing regulation of transport activity. Molecular determinants governing the high‐affinity binding of the compatible solutes by BetP and CaiT, the coupling in symporters and antiporters, and the osmoregulatory properties are discussed in detail for BetP and various BCCT carriers.
Nature | 2012
Camilo Perez; Caroline Koshy; Christine Ziegler
Betaine and Na+ symport has been extensively studied in the osmotically regulated transporter BetP from Corynebacterium glutamicum, a member of the betaine/choline/carnitine transporter family, which shares the conserved LeuT-like fold of two inverted structural repeats. BetP adjusts its transport activity by sensing the cytoplasmic K+ concentration as a measure for hyperosmotic stress via the osmosensing carboxy-terminal domain. BetP needs to be in a trimeric state for communication between individual protomers through several intratrimeric interaction sites. Recently, crystal structures of inward-facing BetP trimers have contributed to our understanding of activity regulation on a molecular level. Here we report new crystal structures, which reveal two conformationally asymmetric BetP trimers, capturing among them three distinct transport states. We observe a total of four new conformations at once: an outward-open apo and an outward-occluded apo state, and two closed transition states—one in complex with betaine and one substrate-free. On the basis of these new structures, we identified local and global conformational changes in BetP that underlie the molecular transport mechanism, which partially resemble structural changes observed in other sodium-coupled LeuT-like fold transporters, but show differences we attribute to the osmolytic nature of betaine, the exclusive substrate specificity and the regulatory properties of BetP.
EMBO Reports | 2005
Alexej Kedrov; Michael Krieg; Christine Ziegler; Werner Kühlbrandt; Daniel J. Müller
Single‐molecule force spectroscopy was applied to unfold individual Na+/H+ antiporters NhaA from membrane patches. The force–extension curves contained detailed information about the strength and location of molecular interactions established within NhaA. Although molecular interactions that stabilize secondary structure elements remained unaffected on switching NhaA into its functional state, those that are assigned to the Na+‐binding site changed markedly. These interactions were formed only in the presence of Na+, with their full strength being established at pH≈6. This finding is in apparent contrast to measurements that suggest that NhaA is fully active at pH 7. Statistical analysis, however, showed that not all NhaA molecules activated this molecular interaction at pH 6, but at pH 7. This implies that the molecular interactions established on Na+ binding may represent an early step in NhaA activation. The direct observation of molecular interactions established within an antiporter provides new insights into their activation mechanisms.
Journal of Molecular Biology | 2009
Matthias Appel; Dilem Hizlan; Kutti R. Vinothkumar; Christine Ziegler; Werner Kühlbrandt
NhaA, the main sodium-proton exchanger in the inner membrane of Escherichia coli, regulates the cytosolic concentrations of H and Na. It is inactive at acidic pH, becomes active between pH 6 and pH 7, and reaches maximum activity at pH 8. By cryo-electron microscopy of two-dimensional crystals grown at pH 4 and incubated at higher pH, we identified two sequential conformational changes in the protein in response to pH or substrate ions. The first change is induced by a rise in pH from 6 to 7 and marks the transition from the inactive state to the pH-activated state. pH activation, which precedes the ion-induced conformational change, is accompanied by an overall expansion of the NhaA monomer and a local ordering of the N-terminus. The second conformational change is induced by the substrate ions Na and Li at pH above 7 and involves a 7-A displacement of helix IVp. This movement would cause a charge imbalance at the ion-binding site that may trigger the release of the substrate ion and open a periplasmic exit channel.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Kamil Khafizov; Camilo Perez; Caroline Koshy; Matthias Quick; Klaus Fendler; Christine Ziegler; Lucy R. Forrest
Sodium-coupled substrate transport plays a central role in many biological processes. However, despite knowledge of the structures of several sodium-coupled transporters, the location of the sodium-binding site(s) often remains unclear. Several of these structures have the five transmembrane-helix inverted-topology repeat, LeuT-like (FIRL) fold, whose pseudosymmetry has been proposed to facilitate the alternating-access mechanism required for transport. Here, we provide biophysical, biochemical, and computational evidence for the location of the two cation-binding sites in the sodium-coupled betaine symporter BetP. A recent X-ray structure of BetP in a sodium-bound closed state revealed that one of these sites, equivalent to the Na2 site in related transporters, is located between transmembrane helices 1 and 8 of the FIRL-fold; here, we confirm the location of this site by other means. Based on the pseudosymmetry of this fold, we hypothesized that the second site is located between the equivalent helices 6 and 3. Molecular dynamics simulations of the closed-state structure suggest this second sodium site involves two threonine sidechains and a backbone carbonyl from helix 3, a phenylalanine from helix 6, and a water molecule. Mutating the residues proposed to form the two binding sites increased the apparent Km and Kd for sodium, as measured by betaine uptake, tryptophan fluorescence, and 22Na+ binding, and also diminished the transient currents measured in proteoliposomes using solid supported membrane-based electrophysiology. Taken together, these results provide strong evidence for the identity of the residues forming the sodium-binding sites in BetP.
The EMBO Journal | 2011
Camilo Perez; Caroline Koshy; Susanne Ressl; Sascha Nicklisch; Reinhard Krämer; Christine Ziegler
BetP is an Na+‐coupled betaine‐specific transporter of the betaine–choline–carnitine (BCC) transporter family involved in the response to hyperosmotic stress. The crystal structure of BetP revealed an overall fold of two inverted structurally related repeats (LeuT‐fold) that BetP shares with other sequence‐unrelated Na+‐coupled symporters. Numerous structures of LeuT‐fold transporters in distinct conformational states have contributed substantially to our understanding of the alternating access mechanism of transport. Nevertheless, coupling of substrate and co‐transported ion fluxes has not been structurally corroborated to the same extent. We converted BetP by a single‐point mutation—glycine to aspartate—into an H+‐coupled choline‐specific transporter and solved the crystal structure of this mutant in complex with choline. The structure of BetP‐G153D demonstrates a new inward‐facing open conformation for BetP. Choline binding to a location close to the second, low‐affinity sodium‐binding site (Na2) of LeuT‐fold transporters is facilitated by the introduced aspartate. Our data confirm the importance of a cation‐binding site in BetP, playing a key role in a proposed molecular mechanism of Na+ and H+ coupling in BCC transporters.
Nature Structural & Molecular Biology | 2017
Martin Wilkes; M. Gregor Madej; Lydia Kreuter; Daniel Rhinow; Veronika Heinz; Silvia De Sanctis; Sabine Ruppel; Rebecca M Richter; Friederike Joos; Marina Grieben; A.C.W. Pike; Juha T. Huiskonen; Elisabeth P. Carpenter; Werner Kühlbrandt; Ralph Witzgall; Christine Ziegler
Polycystin-2 (PC2), a calcium-activated cation TRP channel, is involved in diverse Ca2+ signaling pathways. Malfunctioning Ca2+ regulation in PC2 causes autosomal-dominant polycystic kidney disease. Here we report two cryo-EM structures of distinct channel states of full-length human PC2 in complex with lipids and cations. The structures reveal conformational differences in the selectivity filter and in the large exoplasmic domain (TOP domain), which displays differing N-glycosylation. The more open structure has one cation bound below the selectivity filter (single-ion mode, PC2SI), whereas multiple cations are bound along the translocation pathway in the second structure (multi-ion mode, PC2MI). Ca2+ binding at the entrance of the selectivity filter suggests Ca2+ blockage in PC2MI, and we observed density for the Ca2+-sensing C-terminal EF hand in the unblocked PC2SI state. The states show altered interactions of lipids with the pore loop and TOP domain, thus reflecting the functional diversity of PC2 at different locations, owing to different membrane compositions.
Biochemistry | 2008
Sonja I. Kuhlmann; Anke C. Terwisscha van Scheltinga; Ralf Bienert; Hans-Jörg Kunte; Christine Ziegler
TeaABC from the moderate halophilic bacterium Halomonas elongata belongs to the tripartite ATP-independent periplasmic transporters (TRAP-T), a family of secondary transporters functioning in conjunction with periplasmic substrate binding proteins. TeaABC facilitates the uptake of the compatible solutes ectoine and hydroxyectoine that are accumulated in the cytoplasm under hyperosmotic stress to protect the cell from dehydration. TeaABC is the only known TRAP-T activated by osmotic stress. Currently, our knowledge on the osmoregulated compatible solute transporter is limited to ABC transporters or conventional secondary transporters. Therefore, this study presents the first detailed analysis of the molecular mechanisms underlying substrate recognition of the substrate binding protein of an osmoregulated TRAP-T. In the present study we were able to demonstrate by isothermal titration calorimetry measurements that TeaA is a high-affinity ectoine binding protein ( K d = 0.19 microM) that also has a significant but somewhat lower affinity to hydroxyectoine ( K d = 3.8 microM). Furthermore, we present the structure of TeaA in complex with ectoine at a resolution of 1.55 A and hydroxyectoine at a resolution of 1.80 A. Analysis of the TeaA binding pocket and comparison of its structure to other compatible solute binding proteins from ABC transporters reveal common principles in compatible solute binding but also significant differences like the solvent-mediated specific binding of ectoine to TeaA.