Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Beisel is active.

Publication


Featured researches published by Christian Beisel.


Nature Structural & Molecular Biology | 2010

Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa

Urszula Brykczynska; Mizue Hisano; Serap Erkek; Liliana Ramos; Tim Roloff; Christian Beisel; Dirk Schübeler; Michael B. Stadler; Antoine H. F. M. Peters

In higher eukaryotes, histone methylation is involved in maintaining cellular identity during somatic development. As most nucleosomes are replaced by protamines during spermatogenesis, it is unclear whether histone modifications function in paternal transmission of epigenetic information. Here we show that two modifications important for Trithorax- and Polycomb-mediated gene regulation have methylation-specific distributions at regulatory regions in human spermatozoa. Histone H3 Lys4 dimethylation (H3K4me2) marks genes that are relevant in spermatogenesis and cellular homeostasis. In contrast, histone H3 Lys27 trimethylation (H3K27me3) marks developmental regulators in sperm, as in somatic cells. However, nucleosomes are only moderately retained at regulatory regions in human sperm. Nonetheless, genes with extensive H3K27me3 coverage around transcriptional start sites in particular tend not to be expressed during male and female gametogenesis or in preimplantation embryos. Promoters of orthologous genes are similarly modified in mouse spermatozoa. These data are compatible with a role for Polycomb in repressing somatic determinants across generations, potentially in a variegating manner.


Nature Reviews Genetics | 2011

Silencing chromatin: comparing modes and mechanisms

Christian Beisel; Renato Paro

Recent transcriptome analyses show that substantial proportions of eukaryotic genomes can be copied into RNAs, many of which do not encode protein sequences. However, cells have developed mechanisms to control and counteract the high transcriptional activity of RNA polymerases in order to achieve cell-specific gene activity or to prevent the expression of deleterious sequences. Here we compare how two silencing modes — the Polycomb system and heterochromatin — are targeted, established and maintained at different chromosomal locations and how DNA-binding proteins and non-coding RNAs connect these epigenetically stable and heritable structures to the sequence information of the DNA.


Blood | 2014

Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms

Pontus Lundberg; Axel Karow; Ronny Nienhold; Renate Looser; Hui Hao-Shen; Ina Nissen; Sabine Girsberger; Thomas Lehmann; Jakob Passweg; Martin Stern; Christian Beisel; Robert Kralovics; Radek C. Skoda

Myeloproliferative neoplasms (MPNs) are a group of clonal disorders characterized by aberrant hematopoietic proliferation and an increased tendency toward leukemic transformation. We used targeted next-generation sequencing (NGS) of 104 genes to detect somatic mutations in a cohort of 197 MPN patients and followed clonal evolution and the impact on clinical outcome. Mutations in calreticulin (CALR) were detected using a sensitive allele-specific polymerase chain reaction. We observed somatic mutations in 90% of patients, and 37% carried somatic mutations other than JAK2 V617F and CALR. The presence of 2 or more somatic mutations significantly reduced overall survival and increased the risk of transformation into acute myeloid leukemia. In particular, somatic mutations with loss of heterozygosity in TP53 were strongly associated with leukemic transformation. We used NGS to follow and quantitate somatic mutations in serial samples from MPN patients. Surprisingly, the number of mutations between early and late patient samples did not significantly change, and during a total follow-up of 133 patient years, only 2 new mutations appeared, suggesting that the mutation rate in MPN is rather low. Our data show that comprehensive mutational screening at diagnosis and during follow-up has considerable potential to identify patients at high risk of disease progression.


Genome Research | 2011

Polycomb preferentially targets stalled promoters of coding and noncoding transcripts.

Daniel Enderle; Christian Beisel; Michael B. Stadler; Moritz Gerstung; Prashanth Athri; Renato Paro

The Polycomb group (PcG) and Trithorax group (TrxG) of proteins are required for stable and heritable maintenance of repressed and active gene expression states. Their antagonistic function on gene control, repression for PcG and activity for TrxG, is mediated by binding to chromatin and subsequent epigenetic modification of target loci. Despite our broad knowledge about composition and enzymatic activities of the protein complexes involved, our understanding still lacks important mechanistic detail and a comprehensive view on target genes. In this study we use an extensive data set of ChIP-seq, RNA-seq, and genome-wide detection of transcription start sites (TSSs) to identify and analyze thousands of binding sites for the PcG proteins and Trithorax from a Drosophila S2 cell line. In addition of finding a preference for stalled promoter regions of annotated genes, we uncover many intergenic PcG binding sites coinciding with nonannotated TSSs. Interestingly, this set includes previously unknown promoters for primary transcripts of microRNA genes, thereby expanding the scope of Polycomb control to noncoding RNAs essential for development, apoptosis, and growth.


Nature Communications | 2012

Reliable detection of subclonal single-nucleotide variants in tumour cell populations

Moritz Gerstung; Christian Beisel; Markus Rechsteiner; Peter Wild; Peter Schraml; Holger Moch; Niko Beerenwinkel

According to the clonal evolution model, tumour growth is driven by competing subclones in somatically evolving cancer cell populations, which gives rise to genetically heterogeneous tumours. Here we present a comparative targeted deep-sequencing approach combined with a customised statistical algorithm, called deepSNV, for detecting and quantifying subclonal single-nucleotide variants in mixed populations. We show in a rigorous experimental assessment that our approach is capable of detecting variants with frequencies as low as 1/10,000 alleles. In selected genomic loci of the TP53 and VHL genes isolated from matched tumour and normal samples of four renal cell carcinoma patients, we detect 24 variants at allele frequencies ranging from 0.0002 to 0.34. Moreover, we demonstrate how the allele frequencies of known single-nucleotide polymorphisms can be exploited to detect loss of heterozygosity. Our findings demonstrate that genomic diversity is common in renal cell carcinomas and provide quantitative evidence for the clonal evolution model.


Nature Structural & Molecular Biology | 2010

Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing.

Oliver Bell; Michaela Schwaiger; Florian Lienert; Christian Beisel; Michael B. Stadler; Dirk Schübeler

Histone modifications are thought to regulate gene expression in part by modulating DNA accessibility. Here, we measured genome-wide DNA accessibility in Drosophila melanogaster by combining M.SssI methylation footprinting with methylated DNA immunoprecipitation. We show that methylase accessibility demarcates differential distribution of active and repressive histone modifications as well as sites of transcription and replication initiation. DNA accessibility is increased at active promoters and chromosomal regions that are hyperacetylated at H4K16, particularly at the male X chromosome, suggesting that transcriptional dosage compensation is facilitated by permissive chromatin structure. Conversely, inactive chromosomal domains decorated with H3K27me3 are least accessible, supporting a model for Polycomb-mediated chromatin compaction. In addition, we detect higher accessibility at chromosomal regions that replicate early and at sites of replication initiation. Together, these findings indicate that differential histone-modification patterns and the organization of replication have distinct and measurable effects on the exposure of the DNA template.


Nature Genetics | 2012

A chromatin-modifying function of JNK during stem cell differentiation

Vijay K. Tiwari; Michael B. Stadler; Christiane Wirbelauer; Renato Paro; Dirk Schübeler; Christian Beisel

Signaling mediates cellular responses to extracellular stimuli. The c-Jun NH2-terminal kinase (JNK) pathway exemplifies one subgroup of the mitogen-activated protein (MAP) kinases, which, besides having established functions in stress response, also contribute to development by an unknown mechanism. We show by genome-wide location analysis that JNK binds to a large set of active promoters during the differentiation of stem cells into neurons. JNK-bound promoters are enriched with binding motifs for the transcription factor NF-Y but not for AP-1. NF-Y occupies these predicted sites, and overexpression of dominant-negative NF-YA reduces the JNK presence on chromatin. We find that histone H3 Ser10 (H3S10) is a substrate for JNK, and JNK-bound promoters are enriched for H3S10 phosphorylation. Inhibition of JNK signaling in post-mitotic neurons reduces phosphorylation at H3S10 and the expression of target genes. These results establish MAP kinase binding and function on chromatin at a novel class of target genes during stem cell differentiation.


Cell | 2017

An Immune Atlas of Clear Cell Renal Cell Carcinoma

Stéphane Chevrier; Jacob H. Levine; Vito Riccardo Tomaso Zanotelli; Karina Silina; Daniel Schulz; Marina Bacac; Carola Ries; Laurie Ailles; Michael Alexander Spencer Jewett; Holger Moch; Maries van den Broek; Christian Beisel; Michael B. Stadler; Craig Gedye; Bernhard Reis; Dana Pe’er; Bernd Bodenmiller

Summary Immune cells in the tumor microenvironment modulate cancer progression and are attractive therapeutic targets. Macrophages and T cells are key components of the microenvironment, yet their phenotypes and relationships in this ecosystem and to clinical outcomes are ill defined. We used mass cytometry with extensive antibody panels to perform in-depth immune profiling of samples from 73 clear cell renal cell carcinoma (ccRCC) patients and five healthy controls. In 3.5 million measured cells, we identified 17 tumor-associated macrophage phenotypes, 22 T cell phenotypes, and a distinct immune composition correlated with progression-free survival, thereby presenting an in-depth human atlas of the immune tumor microenvironment in this disease. This study revealed potential biomarkers and targets for immunotherapy development and validated tools that can be used for immune profiling of other tumor types.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression.

Muhammad Tariq; Ute Nussbaumer; Yujie Chen; Christian Beisel; Renato Paro

Molecular chaperone heat-shock protein 90 kDa (Hsp90) is known to facilitate the conformational maturation of a diverse range of proteins involved in different signal transduction pathways during development. Recent studies have implicated Hsp90 in transcriptional regulation and an important role for Hsp90 in epigenetic processes has been proposed. Importantly, genetic and pharmacological perturbation of Hsp90 was shown to reveal heritable phenotypic variation and Hsp90 was found to play an important role in buffering genetic and epigenetic variation whose expression led to altered phenotypes. The underlying molecular mechanism remains elusive, however. Here, we show a direct molecular interaction between Hsp90 and Trithorax (Trx). Trx is a member of the TrxG chromatin proteins controlling, together with the members of the Polycomb group, the developmental fate of cells by modulating epigenetic signals. Hsp90 cooperates with Trx at chromatin for maintaining the active expression state of targets like the Hox genes. Pharmacological inhibition of Hsp90 results in degradation of Trx and a concomitant down-regulation of homeotic gene expression. A similar effect is observed with the human orthologue mixed-lineage leukemia. Connecting an epigenetic network controlling major developmental and cellular pathways with a system sensing external cues may explain the rapid fixation and epigenetic inheritance of phenotypic variation as a result of impaired Hsp90.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners

Gero Strübbe; Christian Popp; Alexander Schmidt; Andrea Pauli; Leonie Ringrose; Christian Beisel; Renato Paro

The maintenance of specific gene expression patterns during cellular proliferation is crucial for the identity of every cell type and the development of tissues in multicellular organisms. Such a cellular memory function is conveyed by the complex interplay of the Polycomb and Trithorax groups of proteins (PcG/TrxG). These proteins exert their function at the level of chromatin by establishing and maintaining repressed (PcG) and active (TrxG) chromatin domains. Past studies indicated that a core PcG protein complex is potentially associated with cell type or even cell stage-specific sets of accessory proteins. In order to better understand the dynamic aspects underlying PcG composition and function we have established an inducible version of the biotinylation tagging approach to purify Polycomb and associated factors from Drosophila embryos. This system enabled fast and efficient isolation of Polycomb containing complexes under near physiological conditions, thereby preserving substoichiometric interactions. Novel interacting proteins were identified by highly sensitive mass spectrometric analysis. We found many TrxG related proteins, suggesting a previously unrecognized extent of molecular interaction of the two counteracting chromatin regulatory protein groups. Furthermore, our analysis revealed an association of PcG protein complexes with the cohesin complex and showed that Polycomb-dependent silencing of a transgenic reporter depends on cohesin function.

Collaboration


Dive into the Christian Beisel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Brites

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael B. Stadler

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Sebastien Gagneux

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mireia Coscolla

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Sonia Borrell

Swiss Tropical and Public Health Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge