Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Bjerggaard Vaegter is active.

Publication


Featured researches published by Christian Bjerggaard Vaegter.


Neuron | 2010

Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin

Fenghua Hu; Thihan Padukkavidana; Christian Bjerggaard Vaegter; Owen A. Brady; Yanqiu Zheng; Ian R. Mackenzie; Howard Feldman; Anders Nykjaer; Stephen M. Strittmatter

VIDEO ABSTRACT The most common inherited form of Frontotemporal Lobar Degeneration (FTLD) known stems from Progranulin (GRN) mutation and exhibits TDP-43 plus ubiquitin aggregates. Despite the causative role of GRN haploinsufficiency in FTLD-TDP, the neurobiology of this secreted glycoprotein is unclear. Here, we examined PGRN binding to the cell surface. PGRN binds to cortical neurons via its C terminus, and unbiased expression cloning identifies Sortilin (Sort1) as a binding site. Sort1⁻/⁻ neurons exhibit reduced PGRN binding. In the CNS, Sortilin is expressed by neurons and PGRN is most strongly expressed by activated microglial cells after injury. Sortilin rapidly endocytoses and delivers PGRN to lysosomes. Mice lacking Sortilin have elevations in brain and serum PGRN levels of 2.5- to 5-fold. The 50% PGRN decrease causative in FTLD-TDP cases is mimicked in GRN+/⁻ mice, and is fully normalized by Sort1 ablation. Sortilin-mediated PGRN endocytosis is likely to play a central role in FTLD-TDP pathophysiology.


Neuron | 2006

Calmodulin Kinase II Interacts with the Dopamine Transporter C Terminus to Regulate Amphetamine-Induced Reverse Transport

Jacob U. Fog; Habibeh Khoshbouei; Marion Holy; William A. Owens; Christian Bjerggaard Vaegter; Namita Sen; Yelyzaveta Nikandrova; Erica Bowton; Douglas G. McMahon; Roger J. Colbran; Lynette C. Daws; Harald H. Sitte; Jonathan A. Javitch; Aurelio Galli; Ulrik Gether

Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the distal C terminus of DAT and colocalized with DAT in dopaminergic neurons. CaMKIIalpha stimulated dopamine efflux via DAT in response to amphetamine in heterologous cells and in dopaminergic neurons. CaMKIIalpha phosphorylated serines in the distal N terminus of DAT in vitro, and mutation of these serines eliminated the stimulatory effects of CaMKIIalpha. A mutation of the DAT C terminus impairing CaMKIIalpha binding also impaired amphetamine-induced dopamine efflux. An in vivo role for CaMKII was supported by chronoamperometry measurements showing reduced amphetamine-induced dopamine efflux in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIalpha binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux.


The Journal of Neuroscience | 2009

Visualization of Dopamine Transporter Trafficking in Live Neurons by Use of Fluorescent Cocaine Analogs

Jacob Eriksen; Søren Rasmussen; Trine Nygaard Rasmussen; Christian Bjerggaard Vaegter; Joo Hwan Cha; Mu-Fa Zou; Amy Hauck Newman; Ulrik Gether

The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2β-carbomethoxy-3β-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than ∼30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC.


Molecular Neurobiology | 2014

Peripheral Nerve Injury Modulates Neurotrophin Signaling in the Peripheral and Central Nervous System

Mette Richner; Maj Ulrichsen; Siri Lander Elmegaard; Ruthe Storgaard Dieu; Lone Tjener Pallesen; Christian Bjerggaard Vaegter

Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75NTR and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.


The Journal of Neuroscience | 2009

Mature BDNF, But Not proBDNF, Reduces Excitability of Fast-Spiking Interneurons in Mouse Dentate Gyrus

Mai Marie Holm; Jose Luis Nieto-Gonzalez; Irina Vardya; Christian Bjerggaard Vaegter; Anders Nykjaer; Kimmo Jensen

Mature BDNF and its precursor proBDNF may both be secreted to exert opposite effects on synaptic plasticity in the hippocampus. However, it is unknown how proBDNF and mature BDNF affect the excitability of GABAergic interneurons and thereby regulate GABAergic inhibition. We made recordings of GABAergic spontaneous IPSCs (sIPSCs) in mouse dentate gyrus granule cells and found that chronic or acute BDNF reductions led to large increases in the sIPSC frequencies, which were TTX (tetrodotoxin) sensitive and therefore action-potential driven. Conversely, addition of mature BDNF, but not proBDNF, within minutes led to a decrease in the sIPSC frequency to 44%. Direct recordings from fast-spiking GABAergic interneurons revealed that mature BDNF reduced their excitability and depressed their action potential firing, whereas proBDNF had no effect. Using the TrkB inhibitor K-252a, or mice deficient for the common neurotrophin receptor p75NTR, the regulation of GABAergic activity was shown specifically to be mediated by BDNF binding to the neurotrophin receptor TrkB. In agreement, immunohistochemistry demonstrated that TrkB, but not p75NTR, was expressed in parvalbumin-positive interneurons. Our results suggest that mature BDNF decreases the excitability of GABAergic interneurons via activation of TrkB, while proBDNF does not impact on GABAergic activity. Thus, by affecting the firing of GABAergic interneurons, mature BDNF may play an important role in regulating network oscillations in the hippocampus.


Neuron | 2014

SorCS2 Regulates Dopaminergic Wiring and Is Processed into an Apoptotic Two-Chain Receptor in Peripheral Glia

Simon Glerup; Ditte Olsen; Christian Bjerggaard Vaegter; Camilla Gustafsen; Susanne S. Sjoegaard; Guido Hermey; Mads Kjolby; Simon Molgaard; Maj Ulrichsen; Simon Boggild; Sune Skeldal; Anja Nawarecki Fjorback; Jens R. Nyengaard; Jan Jacobsen; Dirk Bender; Carsten R. Bjarkam; Esben S. Sørensen; Ernst-Martin Füchtbauer; Gregor Eichele; Peder Madsen; Thomas E. Willnow; Claus Munck Petersen; Anders Nykjaer

Balancing trophic and apoptotic cues is critical for development and regeneration of neuronal circuits. Here we identify SorCS2 as a proneurotrophin (proNT) receptor, mediating both trophic and apoptotic signals in conjunction with p75(NTR). CNS neurons, but not glia, express SorCS2 as a single-chain protein that is essential for proBDNF-induced growth cone collapse in developing dopaminergic processes. SorCS2- or p75(NTR)-deficient in mice caused reduced dopamine levels and metabolism and dopaminergic hyperinnervation of the frontal cortex. Accordingly, both knockout models displayed a paradoxical behavioral response to amphetamine reminiscent of ADHD. Contrary, in PNS glia, but not in neurons, proteolytic processing produced a two-chain SorCS2 isoform that mediated proNT-dependent Schwann cell apoptosis. Sciatic nerve injury triggered generation of two-chain SorCS2 in p75(NTR)-positive dying Schwann cells, with apoptosis being profoundly attenuated in Sorcs2(-/-) mice. In conclusion, we have demonstrated that two-chain processing of SorCS2 enables neurons and glia to respond differently to proneurotrophins.


Cell Reports | 2013

SorLA Controls Neurotrophic Activity by Sorting of GDNF and Its Receptors GFRα1 and RET

Simon Glerup; Maria Lume; Ditte Olsen; Jens R. Nyengaard; Christian Bjerggaard Vaegter; Camilla Gustafsen; Erik Ilsø Christensen; Mads Kjolby; Anders Hay-Schmidt; Dirk Bender; Peder Madsen; Mart Saarma; Anders Nykjaer; Claus Munck Petersen

Glial cell-line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor that has reached clinical trials for Parkinsons disease. GDNF binds to its coreceptor GFRα1 and signals through the transmembrane receptor tyrosine kinase RET, or RET independently through NCAM or syndecan-3. Whereas the GDNF signaling cascades are well described, cellular turnover and trafficking of GDNF and its receptors remain poorly characterized. Here, we find that SorLA acts as sorting receptor for the GDNF/GFRα1 complex, directing it from the cell surface to endosomes. Through this mechanism, GDNF is targeted to lysosomes and degraded while GFRα1 recycles, creating an efficient GDNF clearance pathway. The SorLA/GFRα1 complex further targets RET for endocytosis but not for degradation, affecting GDNF-induced neurotrophic activities. SorLA-deficient mice display elevated GDNF levels, altered dopaminergic function, marked hyperactivity, and reduced anxiety, all of which are phenotypes related to abnormal GDNF activity. Taken together, these findings establish SorLA as a critical regulator of GDNF activity in the CNS.


Nature Communications | 2016

Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS

Line S. Reinert; Katarína Lopušná; Henriette Winther; Chenglong Sun; Martin K. Thomsen; Ramya Nandakumar; Trine H. Mogensen; Morten Meyer; Christian Bjerggaard Vaegter; Jens R. Nyengaard; Katherine A. Fitzgerald; Søren R. Paludan

Herpes simplex encephalitis (HSE) is the most common form of acute viral encephalitis in industrialized countries. Type I interferon (IFN) is important for control of herpes simplex virus (HSV-1) in the central nervous system (CNS). Here we show that microglia are the main source of HSV-induced type I IFN expression in CNS cells and these cytokines are induced in a cGAS–STING-dependent manner. Consistently, mice defective in cGAS or STING are highly susceptible to acute HSE. Although STING is redundant for cell-autonomous antiviral resistance in astrocytes and neurons, viral replication is strongly increased in neurons in STING-deficient mice. Interestingly, HSV-infected microglia confer STING-dependent antiviral activities in neurons and prime type I IFN production in astrocytes through the TLR3 pathway. Thus, sensing of HSV-1 infection in the CNS by microglia through the cGAS–STING pathway orchestrates an antiviral program that includes type I IFNs and immune-priming of other cell types.


Journal of Visualized Experiments | 2011

The Spared Nerve Injury (SNI) Model of Induced Mechanical Allodynia in Mice

Mette Richner; Ole J. Bjerrum; Anders Nykjaer; Christian Bjerggaard Vaegter

Peripheral neuropathic pain is a severe chronic pain condition which may result from trauma to sensory nerves in the peripheral nervous system. The spared nerve injury (SNI) model induces symptoms of neuropathic pain such as mechanical allodynia i.e. pain due to tactile stimuli that do not normally provoke a painful response [1]. The SNI mouse model involves ligation of two of the three branches of the sciatic nerve (the tibial nerve and the common peroneal nerve), while the sural nerve is left intact [2]. The lesion results in marked hypersensitivity in the lateral area of the paw, which is innervated by the spared sural nerve. The non-operated side of the mouse can be used as a control. The advantages of the SNI model are the robustness of the response and that it doesn’t require expert microsurgical skills. The threshold for mechanical pain response is determined by testing with von Frey filaments of increasing bending force, which are repetitively pressed against the lateral area of the paw [3], [4]. A positive pain reaction is defined as sudden paw withdrawal, flinching and/or paw licking induced by the filament. A positive response in three out of five repetitive stimuli is defined as the pain threshold. As demonstrated in the video protocol, C57BL/6 mice experience profound allodynia as early as the day following surgery and maintain this for several weeks.


PLOS ONE | 2013

Sortilin-related receptor SORCS3 is a postsynaptic modulator of synaptic depression and fear extinction.

Tilman Breiderhoff; Gitte B. Christiansen; Lone Tjener Pallesen; Christian Bjerggaard Vaegter; Anders Nykjaer; Mai Marie Holm; Simon Glerup; Thomas E. Willnow

SORCS3 is an orphan receptor of the VPS10P domain receptor family, a group of sorting and signaling receptors central to many pathways in control of neuronal viability and function. SORCS3 is highly expressed in the CA1 region of the hippocampus, but the relevance of this receptor for hippocampal activity remained absolutely unclear. Here, we show that SORCS3 localizes to the postsynaptic density and that loss of receptor activity in gene-targeted mice abrogates NMDA receptor-dependent and -independent forms of long-term depression (LTD). Consistent with a loss of synaptic retraction, SORCS3-deficient mice suffer from deficits in behavioral activities associated with hippocampal LTD, particularly from an accelerated extinction of fear memory. A possible molecular mechanism for SORCS3 in synaptic depression was suggested by targeted proteomics approaches that identified the ability of SORCS3 to functionally interact with PICK1, an adaptor that sorts glutamate receptors at the postsynapse. Faulty localization of PICK1 in SORCS3-deficient neurons argues for altered glutamate receptor trafficking as the cause of altered synaptic plasticity in the SORCS3-deficient mouse model. In conclusion, our studies have identified a novel function for VPS10P domain receptors in control of synaptic depression and suggest SORCS3 as a novel factor modulating aversive memory extinction.

Collaboration


Dive into the Christian Bjerggaard Vaegter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge