Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lone Tjener Pallesen is active.

Publication


Featured researches published by Lone Tjener Pallesen.


The Journal of Neuroscience | 2013

Sortilin and SorLA Display Distinct Roles in Processing and Trafficking of Amyloid Precursor Protein

Camilla Gustafsen; Simon Glerup; Lone Tjener Pallesen; Ditte Olsen; Olav M. Andersen; Anders Nykjaer; Peder Madsen; Claus Munck Petersen

The development and progression of Alzheimers disease is linked to excessive production of toxic amyloid-β peptide, initiated by β-secretase cleavage of the amyloid precursor protein (APP). In contrast, soluble APPα (sAPPα) generated by the α-secretase is known to stimulate dendritic branching and enhance synaptic function. Regulation of APP processing, and the shift from neurotrophic to neurotoxic APP metabolism remains poorly understood, but the cellular localization of APP and its interaction with various receptors is considered important. We here identify sortilin as a novel APP interaction partner. Like the related APP receptor SorLA, sortilin is highly expressed in the CNS, but whereas SorLA mainly colocalizes with APP in the soma, sortilin interacts with APP in neurites. The presence of sortilin promotes α-secretase cleavage of APP, unlike SorLA, which inhibits the generation of all soluble products. Also, sortilin and SorLA both bind and mediate internalization of sAPP but to different cellular compartments. The interaction involves the 6A domain of APP, present in both neuronal and non-neuronal APP isoforms. This is important as sAPP receptors described so far only bind the non-neuronal isoforms, leaving SorLA and sortilin as the only receptors for sAPP generated by neurons. Together, our findings establish sortilin, as a novel APP interaction partner that influences both production and cellular uptake of sAPP.


Molecular Neurobiology | 2014

Peripheral Nerve Injury Modulates Neurotrophin Signaling in the Peripheral and Central Nervous System

Mette Richner; Maj Ulrichsen; Siri Lander Elmegaard; Ruthe Storgaard Dieu; Lone Tjener Pallesen; Christian Bjerggaard Vaegter

Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75NTR and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.


PLOS ONE | 2013

Sortilin-related receptor SORCS3 is a postsynaptic modulator of synaptic depression and fear extinction.

Tilman Breiderhoff; Gitte B. Christiansen; Lone Tjener Pallesen; Christian Bjerggaard Vaegter; Anders Nykjaer; Mai Marie Holm; Simon Glerup; Thomas E. Willnow

SORCS3 is an orphan receptor of the VPS10P domain receptor family, a group of sorting and signaling receptors central to many pathways in control of neuronal viability and function. SORCS3 is highly expressed in the CA1 region of the hippocampus, but the relevance of this receptor for hippocampal activity remained absolutely unclear. Here, we show that SORCS3 localizes to the postsynaptic density and that loss of receptor activity in gene-targeted mice abrogates NMDA receptor-dependent and -independent forms of long-term depression (LTD). Consistent with a loss of synaptic retraction, SORCS3-deficient mice suffer from deficits in behavioral activities associated with hippocampal LTD, particularly from an accelerated extinction of fear memory. A possible molecular mechanism for SORCS3 in synaptic depression was suggested by targeted proteomics approaches that identified the ability of SORCS3 to functionally interact with PICK1, an adaptor that sorts glutamate receptors at the postsynapse. Faulty localization of PICK1 in SORCS3-deficient neurons argues for altered glutamate receptor trafficking as the cause of altered synaptic plasticity in the SORCS3-deficient mouse model. In conclusion, our studies have identified a novel function for VPS10P domain receptors in control of synaptic depression and suggest SORCS3 as a novel factor modulating aversive memory extinction.


Protein Science | 2014

Revisiting the structure of the Vps10 domain of human sortilin and its interaction with neurotensin

Esben M. Quistgaard; Morten Keller Grøftehauge; Peder Madsen; Lone Tjener Pallesen; Brian Christensen; Esben S. Sørensen; Poul Nissen; Claus Munck Petersen; Søren Thirup

Sortilin is a multifunctional receptor involved in sorting and apoptosis. We have previously reported a 2.0‐Å structure of the Vps10 ectodomain in complex with one of its ligands, the tridecapeptide neurotensin. Here we set out to further characterize the structural properties of sortilin and its interaction with neurotensin. To this end, we have determined a new 2.7 Å structure using a crystal grown with a 10‐fold increased concentration of neurotensin. Here a second peptide fragment was observed within the Vps10 β‐propeller, which may in principle either represent a second molecule of neurotensin or the N‐terminal part of the molecule bound at the previously identified binding site. However, in vitro binding experiments strongly favor the latter hypothesis. Neurotensin thus appears to bind with a 1:1 stoichiometry, and whereas the N‐terminus does not bind on its own, it enhances the affinity in context of full‐length neurotensin. We conclude that the N‐terminus of neurotensin probably functions as an affinity enhancer for binding to sortilin by engaging the second binding site. Crystal packing differs partly from the previous structure, which may be due to variations in the degree and pattern of glycosylations. Consequently, a notable hydrophobic loop, not modeled previously, could now be traced. A computational analysis suggests that this and a neighboring loop may insert into the membrane and thus restrain movement of the Vps10 domain. We have, furthermore, mapped all N‐linked glycosylations of CHO‐expressed human sortilin by mass spectrometry and find that their locations are compatible with membrane insertion of the hydrophobic loops.


Molecular Neurobiology | 2012

Sortilin and SorLA Regulate Neuronal Sorting of Trophic and Dementia-Linked Proteins

Lone Tjener Pallesen; Christian Bjerggaard Vaegter

Sortilin and SorLA are members of the Vps10p domain receptor family, the Sortilins, which comprise five type I transmembrane receptors differentially expressed in neuronal tissues of the central and peripheral nervous system. Since the identification of sortilin in 1997, members of this receptor family are recognized as sorting receptors primarily in the trans-Golgi network, interacting with a wide range of ligands comprising other transmembrane receptors as well as soluble proteins from neurotrophic factors to enzymes targeted for lysosomes. Specifically, the involvement of sortilin in neutrophin signaling in healthy and injured neurons is increasingly recognized, as well as the impact of SorLA on the cellular processing of amyloid precursor protein, an important component in Alzheimer’s disease. The current understanding of these issues as well as the recent recognition of a molecular link between sortilin and frontotemporal dementia is addressed in this present review.


Journal of Dairy Science | 2008

Characterization of Human Mucin (MUC15) and Identification of Ovine and Caprine Orthologs

Lone Tjener Pallesen; Lise Pedersen; Torben E. Petersen; C.R. Knudsen; Jan T. Rasmussen

The glycoprotein MUC15 (mucin 15) was initially isolated from the bovine milk fat globule membrane. The present work demonstrates the existence of immunologically similar proteins ( approximately 130 kDa) in ovine, caprine, porcine, and buffalo milk samples. Purification and N-terminal amino acid sequencing confirmed the presence of ovine and caprine MUC15 orthologs in milk fat globule membranes. Expression of MUC15 in human milk was demonstrated by immunostaining ( approximately 150 kDa) as well as by mass spectrometry. Screening of a human multiple tissue expression array showed abundant MUC15 gene expression in placenta, salivary gland, thyroid gland, trachea, esophagus, kidney, testis, and the leukemia K-562 cell line. Furthermore, moderate expression was seen in the pancreas, adult and fetal lung, fetal kidney, lymph node, adult and fetal thymus, and parietal lobe. Structural motifs for interactions (epidermal growth factor receptor and Src homology 2 domains) are identified in the intracellular region. Implication of the mucin in signal transduction and the potential physiological function of MUC15 are discussed.


Acta Crystallographica Section D-biological Crystallography | 2014

Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

Jacob Andersen; Tenna Juul Schrøder; Søren Christensen; Dorthe Strandbygård; Lone Tjener Pallesen; Maria Marta García-Alai; Samsa Lindberg; Morten Langgård; Jørgen Eskildsen; Laurent David; Lena Tagmose; Klaus B. Simonsen; Philip J. Maltas; Lars Christian Biilmann Rønn; Inge E.M. de Jong; Ibrahim John Malik; Jan Egebjerg; Jens-Jacob Karlsson; Srinivas Uppalanchi; Durga Rao Sakumudi; Pradheep Eradi; Steven P. Watson; Søren Thirup

The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported.


Molecular and Cellular Biology | 2016

Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover

Jakob Vejby Larsen; Anders C. M. Kristensen; Lone Tjener Pallesen; Johannes Bauer; Christian Bjerggaard Vaegter; Morten Nielsen; Peder Madsen; Claus Munck Petersen

ABSTRACT Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ.


Neuroscience | 2016

Neuronal death in the dorsal root ganglion after sciatic nerve injury does not depend on sortilin

Gürgör P; Lone Tjener Pallesen; Johnsen L; Maj Ulrichsen; de Jong Ie; Christian Bjerggaard Vaegter

Injury to the sciatic nerve induces loss of sensory neurons in the affected dorsal root ganglia (DRGs). Previous studies have suggested the involvement of the neurotrophin receptors p75 neurotrophin receptor (p75(NTR)) and sortilin, proposing that sensory neuron subpopulations undergo proneurotrophin-induced apoptosis in a similar manner to what can be observed in the CNS following injury. To further investigate this hypothesis we induced sciatic nerve injury in sortilin-deficient mice, thereby preventing apoptotic signaling of proneurotrophins via the sortilin-p75(NTR) receptor complex. Using an unbiased stereological approach we found that loss of sortilin did not prevent the injury-induced loss of DRG neurons. This result demonstrates that previous findings linking p75(NTR) and proneurotrophins to loss of sensory neurons need to involve sortilin-independent pathways and suggests that proneurotrophins may elicit different functions in the CNS and PNS.


Journal of Neuroscience Methods | 2018

Isolation of Satellite Glial Cells for High-Quality RNA purification

Sara Buskbjerg Jager; Lone Tjener Pallesen; Christian Bjerggaard Vaegter

BACKGROUND Satellite glial cells (SGCs) envelope the neuronal somas in the dorsal root ganglia (DRG) and are believed to provide important neuronal support. Animal models of peripheral nerve injury, diabetes or chemotherapy all demonstrate activation of SGCs, suggesting important physiological roles for SGCs in various states of peripheral neuropathy. However, the biology of these glial cells is only poorly characterized under normal as well as pathological conditions due to suboptimal isolation methods. NEW METHOD The method presented here allows complete dissociation and isolation of highly pure SGCs from rat DRGs by fluorescence-activated cell sorting (FACS) using SGC-specific antibodies. The method further allows purification of high-quality RNA from the fixed and permeabilized cells. RESULTS The purified RNA shows very little degradation, demonstrated by RNA integrity number (RIN) analysis with an average value of 8. The purified RNA, therefore, lends itself very well to downstream applications such as qPCR and transcriptome analysis. COMPARISON WITH EXISTING METHODS Primary SGC cultures have previously been established for in vitro studies. Unfortunately, SGCs quickly change morphology and gene expression in vitro, complicating biologically meaningful interpretation of the obtained results. In contrast, this method allows the investigation of SGC gene regulation in vivo by isolation of high-quality RNA. CONCLUSIONS This method enables investigation of SGC transcriptional response in vivo by isolation and analysis of mRNA expression, allowing a more detailed investigation of SGC biology under normal as well as pathological conditions.

Collaboration


Dive into the Lone Tjener Pallesen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge