Christian Braun
Ludwig Maximilian University of Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Braun.
Cancer Research | 2008
Christian Braun; Xin Zhang; Irina Savelyeva; Sonja Wolff; Ute M. Moll; Troels Schepeler; Torben F. Ørntoft; Claus L. Andersen; Matthias Dobbelstein
microRNAs provide a novel layer of regulation for gene expression by interfering with the stability and/or translation of specific target mRNAs. Overall levels of microRNAs are frequently down-regulated in cancer cells, and reducing general microRNA processing increases cancerogenesis in transgenic models, suggesting that at least some microRNAs might act as effectors in tumor suppression. Accordingly, the tumor suppressor p53 up-regulates miR-34a, a microRNA that contributes to apoptosis and acute senescence. Here, we used array hybridization to find that p53 induces two additional, mutually related clusters of microRNAs, leading to the up-regulation of miR-192, miR-194, and miR-215. The same microRNAs were detected at high levels in normal colon tissue but were severely reduced in many colon cancer samples. On the other hand, miR-192 and its cousin miR-215 can each contribute to enhanced CDKN1A/p21 levels, colony suppression, cell cycle arrest, and cell detachment from a solid support. These effects were partially dependent on the presence of wild-type p53. Antagonizing endogenous miR-192 attenuated 5-fluorouracil-induced accumulation of p21. Hence, miR-192 and miR-215 can act as effectors as well as regulators of p53; they seem to suppress cancerogenesis through p21 accumulation and cell cycle arrest.
Journal of Experimental Medicine | 2013
Daniel Kotlarz; Natalia Ziętara; Gulbu Uzel; Thomas Weidemann; Christian Braun; Jana Diestelhorst; Peter Krawitz; Peter N. Robinson; Jochen Hecht; Jacek Puchałka; E. Michael Gertz; Alejandro A. Schäffer; Monica G. Lawrence; Lela Kardava; Dietmar Pfeifer; Ulrich Baumann; Eva-Doreen Pfister; Eric P. Hanson; Axel Schambach; Hans Kreipe; Susan Moir; Joshua D. Milner; Petra Schwille; Stefan Mundlos; Christoph Klein
A primary immunodeficiency syndrome caused by loss-of-function mutations in the IL-21 receptor exhibits impaired B, T, and NK cell function.
conference on applied natural language processing | 1997
Günter Neumann; Rolf Backofen; Judith Baur; Markus Becker; Christian Braun
This paper describes SMES, an information extraction core system for real world German text processing. The basic design criterion of the system is of providing a set of basic powerful, robust, and efficient natural language components and generic linguistic knowledge sources which can easily be customized for processing different tasks in a flexible manner.
Cell | 2014
Christian P. Pallasch; Ilya B. Leskov; Christian Braun; Daniela Vorholt; Adam Drake; Yadira M. Soto-Feliciano; Eric H. Bent; Janine Schwamb; Bettina P. Iliopoulou; Nadine Kutsch; Nico van Rooijen; Lukas P. Frenzel; Clemens M. Wendtner; Lukas C. Heukamp; Karl Anton Kreuzer; Michael Hallek; Jianzhu Chen; Michael T. Hemann
Therapy-resistant microenvironments represent a major barrier toward effective elimination of disseminated malignancies. Here, we show that select microenvironments can underlie resistance to antibody-based therapy. Using a humanized model of treatment refractory B cell leukemia, we find that infiltration of leukemia cells into the bone marrow rewires the tumor microenvironment to inhibit engulfment of antibody-targeted tumor cells. Resistance to macrophage-mediated killing can be overcome by combination regimens involving therapeutic antibodies and chemotherapy. Specifically, the nitrogen mustard cyclophosphamide induces an acute secretory activating phenotype (ASAP), releasing CCL4, IL8, VEGF, and TNFα from treated tumor cells. These factors induce macrophage infiltration and phagocytic activity in the bone marrow. Thus, the acute induction of stress-related cytokines can effectively target cancer cells for removal by the innate immune system. This synergistic chemoimmunotherapeutic regimen represents a potent strategy for using conventional anticancer agents to alter the tumor microenvironment and promote the efficacy of targeted therapeutics.
eLife | 2013
Natalya N. Pavlova; Christian P. Pallasch; Andrew Elia; Christian Braun; Thomas F. Westbrook; Michael T. Hemann; Stephen J. Elledge
During all stages of tumor progression, cancer cells are subjected to inappropriate extracellular matrix environments and must undergo adaptive changes in order to evade growth constraints associated with the loss of matrix attachment. A gain of function screen for genes that enable proliferation independently of matrix anchorage identified a cell adhesion molecule PVRL4 (poliovirus-receptor-like 4), also known as Nectin-4. PVRL4 promotes anchorage-independence by driving cell-to-cell attachment and matrix-independent integrin β4/SHP-2/c-Src activation. Solid tumors frequently have copy number gains of the PVRL4 locus and some have focal amplifications. We demonstrate that the transformation of breast cancer cells is dependent on PVRL4. Furthermore, growth of orthotopically implanted tumors in vivo is inhibited by blocking PVRL4-driven cell-to-cell attachment with monoclonal antibodies, demonstrating a novel strategy for targeted therapy of cancer. DOI: http://dx.doi.org/10.7554/eLife.00358.001
Journal of Neurology | 2003
Maggie C. Walter; Christian Braun; Matthias Vorgerd; Maja Poppe; Christian Thirion; Carolin Schmidt; Herbert Schreiber; Ursula I. Knirsch; Dagmar Brummer; Wolfgang Müller-Felber; D. Pongratz; Josef Müller-Höcker; Angela Huebner; Hanns Lochmüller
Abstract.Mutations in the human dysferlin gene (DYSF) cause autosomal recessive muscular dystrophies characterized by degeneration and weakness of proximal and/or distal muscles: limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM). Recently, an interaction between caveolin-3 and dysferlin in normal and dystrophic muscle (primary caveolin-3 deficiency; LGMD1C) was shown. In this study, clinical,morphological and genetic analysis was carried out in four independent LGMD2B/MM patients. All patients presented with an adult-onset, slowly progressive muscular dystrophy with variable involvement of proximal and distal muscles. We found complete lack of dysferlin in the four LGMD2B/MM patients. Secondary reduction of caveolin-3 was detected in three out of the four patients. Regular caveolae were detected along the basal lamina in two patients by electron microscopy. We provide further evidence that dysferlin and caveolin-3 interact in human skeletal muscle. It remains to be elucidated whether the loss of this interaction contributes to pathogenic events in muscular dystrophy.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Christian Braun; Peter M. Bruno; Max A. Horlbeck; Luke A. Gilbert; Jonathan S. Weissman; Michael T. Hemann
Significance Tumor development is accompanied by widespread genomic and transcriptional changes. The mere acquisition of this information has greatly outpaced our capability to functionally study the biological roles of altered genes. This dilemma highlights the necessity to develop technologies that facilitate a rapid functional prioritization among lists of altered genes. Here, we use catalytically dead Cas9 to specifically activate or inactivate the transcription of genes in mouse models of cancer. This approach allows us to study the impact of gene-level changes in vivo and to systematically screen for novel genetic mediators of treatment relapse. We expect that this approach can be used to systematically dissect the biological role of cancer-related genes, a process critical to identifying new cancer drug targets. Targeted transcriptional regulation is a powerful tool to study genetic mediators of cellular behavior. Here, we show that catalytically dead Cas9 (dCas9) targeted to genomic regions upstream or downstream of the transcription start site allows for specific and sustainable gene-expression level alterations in tumor cells in vitro and in syngeneic immune-competent mouse models. We used this approach for a high-coverage pooled gene-activation screen in vivo and discovered previously unidentified modulators of tumor growth and therapeutic response. Moreover, by using dCas9 linked to an activation domain, we can either enhance or suppress target gene expression simply by changing the genetic location of dCas9 binding relative to the transcription start site. We demonstrate that these directed changes in gene-transcription levels occur with minimal off-target effects. Our findings highlight the use of dCas9-mediated transcriptional regulation as a versatile tool to reproducibly interrogate tumor phenotypes in vivo.
Cancer Research | 2015
José L. McFaline-Figueroa; Christian Braun; Monica Stanciu; Zachary D. Nagel; Patrizia Mazzucato; Dewakar Sangaraju; Edvinas Cerniauskas; Kelly Barford; Amanda Vargas; Yimin Chen; Natalia Tretyakova; Jacqueline A. Lees; Michael T. Hemann; Forest M. White; Leona D. Samson
Glioblastoma (GBM) is often treated with the cytotoxic drug temozolomide, but the disease inevitably recurs in a drug-resistant form after initial treatment. Here, we report that in GBM cells, even a modest decrease in the mismatch repair (MMR) components MSH2 and MSH6 have profound effects on temozolomide sensitivity. RNAi-mediated attenuation of MSH2 and MSH6 showed that such modest decreases provided an unexpectedly strong mechanism of temozolomide resistance. In a mouse xenograft model of human GBM, small changes in MSH2 were sufficient to suppress temozolomide-induced tumor regression. Using The Cancer Genome Atlas to analyze mRNA expression patterns in tumors from temozolomide-treated GBM patients, we found that MSH2 transcripts in primary GBM could predict patient responses to initial temozolomide therapy. In recurrent disease, the absence of microsatellite instability (the standard marker for MMR deficiency) suggests a lack of involvement of MMR in the resistant phenotype of recurrent disease. However, more recent studies reveal that decreased MMR protein levels occur often in recurrent GBM. In accordance with our findings, these reported decreases may constitute a mechanism by which GBM evades temozolomide sensitivity while maintaining microsatellite stability. Overall, our results highlight the powerful effects of MSH2 attenuation as a potent mediator of temozolomide resistance and argue that MMR activity offers a predictive marker for initial therapeutic response to temozolomide treatment.
Optics Express | 2015
Adrian Sarapata; Marian Willner; Marco Walter; Thomas Duttenhofer; Konradin Kaiser; Pascal Meyer; Christian Braun; Alexander A. Fingerle; Peter B. Noël; Franz Pfeiffer; Julia Herzen
Imaging of large and dense objects with grating-based X-ray phase-contrast computed tomography requires high X-ray photon energy and large fields of view. It has become increasingly possible due to the improvements in the grating manufacturing processes. Using a high-energy X-ray phase-contrast CT setup with a large (10 cm in diameter) analyzer grating and operated at an acceleration tube voltage of 70 kVp, we investigate the complementarity of both attenuation and phase contrast modalities with materials of various atomic numbers (Z). We confirm experimentally that for low-Z materials, phase contrast yields no additional information content over attenuation images, yet it provides increased contrast-to-noise ratios (CNRs). The complementarity of both signals can be seen again with increasing Z of the materials and a more comprehensive material characterization is thus possible. Imaging of a part of a human cervical spine with intervertebral discs surrounded by bones and various soft tissue types showcases the benefit of high-energy X-ray phase-contrast system. Phase-contrast reconstruction reveals the internal structure of the discs and makes the boundary between the disc annulus and nucleus pulposus visible. Despite the fact that it still remains challenging to develop a high-energy grating interferometer with a broad polychromatic source with satisfactory optical performance, improved image quality for phase contrast as compared to attenuation contrast can be obtained and new exciting applications foreseen.
Nature Communications | 2017
Sophia Doll; Martina Dreßen; Philipp E. Geyer; Daniel N Itzhak; Christian Braun; S. Doppler; Florian Meier; Marcus-André Deutsch; Harald Lahm; Rüdiger Lange; Markus Krane; Matthias Mann
The heart is a central human organ and its diseases are the leading cause of death worldwide, but an in-depth knowledge of the identity and quantity of its constituent proteins is still lacking. Here, we determine the healthy human heart proteome by measuring 16 anatomical regions and three major cardiac cell types by high-resolution mass spectrometry-based proteomics. From low microgram sample amounts, we quantify over 10,700 proteins in this high dynamic range tissue. We combine copy numbers per cell with protein organellar assignments to build a model of the heart proteome at the subcellular level. Analysis of cardiac fibroblasts identifies cellular receptors as potential cell surface markers. Application of our heart map to atrial fibrillation reveals individually distinct mitochondrial dysfunctions. The heart map is available at maxqb.biochem.mpg.de as a resource for future analyses of normal heart function and disease.The human heart is composed of distinct regions and cell types, but relatively little is known about their specific protein composition. Here, the authors present a region- and cell type-specific proteomic map of the healthy human heart, revealing functional differences and potential cell type markers.