Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Cortés-Rojo is active.

Publication


Featured researches published by Christian Cortés-Rojo.


Journal of Bioenergetics and Biomembranes | 2009

Elucidation of the effects of lipoperoxidation on the mitochondrial electron transport chain using yeast mitochondria with manipulated fatty acid content

Christian Cortés-Rojo; Elizabeth Calderon-Cortes; Monica Clemente-Guerrero; Mirella Estrada-Villagómez; Salvador Manzo-Avalos; Ricardo Mejía-Zepeda; Istvan Boldogh; Alfredo Saavedra-Molina

Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain (ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe2+ treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive) fatty acid composition. Augmented sensitivity to oxidative stress was observed in the complex III-complex IV segment of the ETC. Lipoperoxidation did not alter the cytochromes content. Under lipoperoxidative conditions, cytochrome c reduction by succinate was almost totally eliminated by superoxide dismutase and stigmatellin. Our results suggest that lipoperoxidation impairs electron transfer mainly at cytochrome b in complex III, which leads to increased resistance to antimycin A and ROS generation due to an electron leak at the level of the QO site of complex III.


Journal of Bioenergetics and Biomembranes | 2011

Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria

Areli Gutierrez-Perez; Christian Cortés-Rojo; Ruth Noriega-Cisneros; Elizabeth Calderon-Cortes; Salvador Manzo-Avalos; Monica Clemente-Guerrero; Daniel Godínez-Hernández; Istvan Boldogh; Alfredo Saavedra-Molina

Trans-resveratrol is a nutraceutical with known antioxidant, anti-inflammatory, cardioprotective, and anti-apoptotic properties. The aim of this study was to evaluate the effects of resveratrol on heart mitochondria. Resveratrol significantly decreased Fe2+ + ascorbate oxidant system-induced lipid peroxide levels, preserved physiological levels of glutathione, and increased nitric oxide (NO) levels in mitochondria. Under calcium-mediated stress, there was a 2.7-fold increase in the NO levels, and a mild decoupling in the mitochondrial respiratory chain. These results provide a mechanism for and support the beneficial effects of resveratrol under pathological conditions induced by oxidative stress and calcium overload. In addition, these findings underscore the usefulness of resveratrol in the prevention of cardiovascular diseases.


Journal of Bioenergetics and Biomembranes | 2014

Effects of diabetes on oxidative and nitrosative stress in kidney mitochondria from aged rats

Rocío Viridiana Pérez-Gallardo; Ruth Noriega-Cisneros; Edgar Esquivel-Gutierrez; Elizabeth Calderon-Cortes; Christian Cortés-Rojo; Salvador Manzo-Avalos; Jesús Campos-García; Rafael Salgado-Garciglia; Rocío Montoya-Pérez; Istvan Boldogh; Alfredo Saavedra-Molina

Diabetes mellitus (DM) is characterized by chronic hyperglycemia resulting from defects in the secretion and/or action of insulin. Diabetic nephropathy (DN) develops in diabetic patients and is characterized by a progressive deterioration of renal function. The mitochondrial electron transport chain (ETC) produces most of the reactive oxygen species (ROS) that are involved in diabetic nephropathy. Due to the high incidence of DM in the elderly, the aim of this study was to evaluate oxidative and nitrosative stress in kidney mitochondria from aged rats. We evaluated lipid peroxidation (LPO), nitric oxide (NO•) production, S-nitrosylation profiles, glutathione levels, and glutathione reductase and aconitase activities under streptozotocin (STZ)-induced experimental diabetes in kidney mitochondria from aged rats. The results showed an increase in LPO, NO• production, and S-nitrosylated proteins in rats with STZ-induced diabetes. A decrease in glutathione (GSH) levels and glutathione reductase (GR) and aconitase activities in the rats that received the STZ-induced diabetes treatment was also observed, when compared with the age-related controls. The data suggest that oxidative and nitrosative stresses promote mitochondrial oxidative dysfunction in the more advanced age rat kidney in STZ-induced diabetes.


Journal of Bioenergetics and Biomembranes | 2015

Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats.

Omar Ortiz-Avila; Marco A. Gallegos-Corona; Luis Alberto Sánchez-Briones; Elizabeth Calderon-Cortes; Rocío Montoya-Pérez; Alain R. Rodríguez-Orozco; Jesús Campos-García; Alfredo Saavedra-Molina; Ricardo Mejía-Zepeda; Christian Cortés-Rojo

Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis.


Mitochondrion | 2013

Mitochondrial response to oxidative and nitrosative stress in early stages of diabetes

Ruth Noriega-Cisneros; Christian Cortés-Rojo; Salvador Manzo-Avalos; Monica Clemente-Guerrero; Elizabeth Calderon-Cortes; Rafael Salgado-Garciglia; Rocío Montoya-Pérez; Istvan Boldogh; Alfredo Saavedra-Molina

Diabetes mellitus (DM) is associated with increased production of reactive oxygen and nitrogen species; consequently, an increase in lipid peroxidation and a decrease in antioxidants resulting in mitochondrial dysfunction. Using a rat model of DM induced by streptozotocin, we show the opposite: an increase in NO levels, S-nitrosylation, aconitase activity, and total glutathione and a decrease in lipid peroxidation at early stages of diabetes. These data imply that the decrease in lipid peroxidation is a vital early response to hyperglycemia to prevent escalation of ROS generation in mitochondria. These results also suggest a need for novel therapeutic targets to prevent the neurological consequences of diabetes.


PLOS ONE | 2014

Malfunctioning of the Iron-Sulfur Cluster Assembly Machinery in Saccharomyces cerevisiae Produces Oxidative Stress via an Iron-Dependent Mechanism, Causing Dysfunction in Respiratory Complexes

Mauricio Gomez; Rocío Viridiana Pérez-Gallardo; Luis A. Sánchez; Alma L. Díaz-Pérez; Christian Cortés-Rojo; Victor Meza Carmen; Alfredo Saavedra-Molina; Javier Lara-Romero; S. Jiménez-Sandoval; Francisco de Borja Rodríguez; José S. Rodríguez-Zavala; Jesús Campos-García

Biogenesis and recycling of iron–sulfur (Fe–S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe–S clusters are assembled into apoproteins by the iron–sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe–S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe–S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe–S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.


Journal of Bioenergetics and Biomembranes | 2013

Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria

Omar Ortiz-Avila; Carlos Alberto Sámano-García; Elizabeth Calderon-Cortes; Ismael H. Pérez-Hernández; Ricardo Mejía-Zepeda; Alain R. Rodríguez-Orozco; Alfredo Saavedra-Molina; Christian Cortés-Rojo

Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90xa0days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes cu2009+u2009c1 loss. During Fe2+-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe2+. Avocado oil also decreased ROS generation in Fe2+-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.


Mitochondrion | 2008

Changes in mitochondrial functionality and calcium uptake in hypertensive rats as a function of age.

Elizabeth Calderon-Cortes; Christian Cortés-Rojo; Monica Clemente-Guerrero; Salvador Manzo-Avalos; Rafael Villalobos-Molina; Istvan Boldogh; Alfredo Saavedra-Molina

We studied whether mitochondrial functions and Ca2+ metabolism were altered in Wistar Kyoto normotensive (WKY) and spontaneous hypertensive rats (SHR). Ca2+ uptake was decreased in SHR compared to WKY rats. Accumulation of Ca2+ was more efficient in WKY than in SHR rats. mDeltaPsi was lower in SHR compared to WKY rats. Basal complex IV activity was higher in SHR than WKY rats, whereas basal L-citrulline production, an indicator of nitric oxide synthesis, was decreased in SHR and dependent on Ca2+ concentration (p<0.05). Impact of Ca2+ was counteracted by EGTA. These data show an age-dependent decreased mitochondrial functions in brain mitochondria during hypertension.


Biochemistry Research International | 2012

Hypolipidemic Activity of Eryngium carlinae on Streptozotocin-Induced Diabetic Rats

Ruth Noriega-Cisneros; Omar Ortiz-Avila; Edgar Esquivel-Gutierrez; Monica Clemente-Guerrero; Salvador Manzo-Avalos; Rafael Salgado-Garciglia; Christian Cortés-Rojo; Istvan Boldogh; Alfredo Saavedra-Molina

Diabetes mellitus (DM) is a significant risk factor for the development of cardiovascular complications. This study was undertaken to investigate the effect of chronic administration of ethanolic extract of Eryngium carlinae on glucose, creatinine, uric acid, total cholesterol, and triglycerides levels in serum of streptozotocin- (STZ-) induced diabetic rats. Triglycerides, total cholesterol, and uric acid levels increased in serum from diabetic rats. The treatment with E. carlinae prevented these changes. The administration of E. carlinae extract reduced the levels of creatinine, uric acid, total cholesterol, and triglycerides. Thus administration of E. carlinae is able to reduce hyperlipidemia related to the cardiovascular risk in diabetes mellitus.


Experimental Diabetes Research | 2015

Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

Omar Ortiz-Avila; Mauricio Esquivel-Martínez; Berenice Eridani Olmos-Orizaba; Alfredo Saavedra-Molina; Alain R. Rodríguez-Orozco; Christian Cortés-Rojo

Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨm), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

Collaboration


Dive into the Christian Cortés-Rojo's collaboration.

Top Co-Authors

Avatar

Alfredo Saavedra-Molina

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Calderon-Cortes

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Monica Clemente-Guerrero

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Salvador Manzo-Avalos

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Rocío Montoya-Pérez

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Omar Ortiz-Avila

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Ruth Noriega-Cisneros

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Alain R. Rodríguez-Orozco

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Rafael Salgado-Garciglia

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Edgar Esquivel-Gutierrez

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Researchain Logo
Decentralizing Knowledge