Elizabeth Calderon-Cortes
Universidad Michoacana de San Nicolás de Hidalgo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth Calderon-Cortes.
Journal of Bioenergetics and Biomembranes | 2009
Christian Cortés-Rojo; Elizabeth Calderon-Cortes; Monica Clemente-Guerrero; Mirella Estrada-Villagómez; Salvador Manzo-Avalos; Ricardo Mejía-Zepeda; Istvan Boldogh; Alfredo Saavedra-Molina
Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain (ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe2+ treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive) fatty acid composition. Augmented sensitivity to oxidative stress was observed in the complex III-complex IV segment of the ETC. Lipoperoxidation did not alter the cytochromes content. Under lipoperoxidative conditions, cytochrome c reduction by succinate was almost totally eliminated by superoxide dismutase and stigmatellin. Our results suggest that lipoperoxidation impairs electron transfer mainly at cytochrome b in complex III, which leads to increased resistance to antimycin A and ROS generation due to an electron leak at the level of the QO site of complex III.
Journal of Bioenergetics and Biomembranes | 2011
Areli Gutierrez-Perez; Christian Cortés-Rojo; Ruth Noriega-Cisneros; Elizabeth Calderon-Cortes; Salvador Manzo-Avalos; Monica Clemente-Guerrero; Daniel Godínez-Hernández; Istvan Boldogh; Alfredo Saavedra-Molina
Trans-resveratrol is a nutraceutical with known antioxidant, anti-inflammatory, cardioprotective, and anti-apoptotic properties. The aim of this study was to evaluate the effects of resveratrol on heart mitochondria. Resveratrol significantly decreased Fe2+ + ascorbate oxidant system-induced lipid peroxide levels, preserved physiological levels of glutathione, and increased nitric oxide (NO) levels in mitochondria. Under calcium-mediated stress, there was a 2.7-fold increase in the NO levels, and a mild decoupling in the mitochondrial respiratory chain. These results provide a mechanism for and support the beneficial effects of resveratrol under pathological conditions induced by oxidative stress and calcium overload. In addition, these findings underscore the usefulness of resveratrol in the prevention of cardiovascular diseases.
Journal of Bioenergetics and Biomembranes | 2014
Rocío Viridiana Pérez-Gallardo; Ruth Noriega-Cisneros; Edgar Esquivel-Gutierrez; Elizabeth Calderon-Cortes; Christian Cortés-Rojo; Salvador Manzo-Avalos; Jesús Campos-García; Rafael Salgado-Garciglia; Rocío Montoya-Pérez; Istvan Boldogh; Alfredo Saavedra-Molina
Diabetes mellitus (DM) is characterized by chronic hyperglycemia resulting from defects in the secretion and/or action of insulin. Diabetic nephropathy (DN) develops in diabetic patients and is characterized by a progressive deterioration of renal function. The mitochondrial electron transport chain (ETC) produces most of the reactive oxygen species (ROS) that are involved in diabetic nephropathy. Due to the high incidence of DM in the elderly, the aim of this study was to evaluate oxidative and nitrosative stress in kidney mitochondria from aged rats. We evaluated lipid peroxidation (LPO), nitric oxide (NO•) production, S-nitrosylation profiles, glutathione levels, and glutathione reductase and aconitase activities under streptozotocin (STZ)-induced experimental diabetes in kidney mitochondria from aged rats. The results showed an increase in LPO, NO• production, and S-nitrosylated proteins in rats with STZ-induced diabetes. A decrease in glutathione (GSH) levels and glutathione reductase (GR) and aconitase activities in the rats that received the STZ-induced diabetes treatment was also observed, when compared with the age-related controls. The data suggest that oxidative and nitrosative stresses promote mitochondrial oxidative dysfunction in the more advanced age rat kidney in STZ-induced diabetes.
Journal of Bioenergetics and Biomembranes | 2015
Omar Ortiz-Avila; Marco A. Gallegos-Corona; Luis Alberto Sánchez-Briones; Elizabeth Calderon-Cortes; Rocío Montoya-Pérez; Alain R. Rodríguez-Orozco; Jesús Campos-García; Alfredo Saavedra-Molina; Ricardo Mejía-Zepeda; Christian Cortés-Rojo
Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis.
Mitochondrion | 2013
Ruth Noriega-Cisneros; Christian Cortés-Rojo; Salvador Manzo-Avalos; Monica Clemente-Guerrero; Elizabeth Calderon-Cortes; Rafael Salgado-Garciglia; Rocío Montoya-Pérez; Istvan Boldogh; Alfredo Saavedra-Molina
Diabetes mellitus (DM) is associated with increased production of reactive oxygen and nitrogen species; consequently, an increase in lipid peroxidation and a decrease in antioxidants resulting in mitochondrial dysfunction. Using a rat model of DM induced by streptozotocin, we show the opposite: an increase in NO levels, S-nitrosylation, aconitase activity, and total glutathione and a decrease in lipid peroxidation at early stages of diabetes. These data imply that the decrease in lipid peroxidation is a vital early response to hyperglycemia to prevent escalation of ROS generation in mitochondria. These results also suggest a need for novel therapeutic targets to prevent the neurological consequences of diabetes.
Journal of Bioenergetics and Biomembranes | 2013
Omar Ortiz-Avila; Carlos Alberto Sámano-García; Elizabeth Calderon-Cortes; Ismael H. Pérez-Hernández; Ricardo Mejía-Zepeda; Alain R. Rodríguez-Orozco; Alfredo Saavedra-Molina; Christian Cortés-Rojo
Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90xa0days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes cu2009+u2009c1 loss. During Fe2+-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe2+. Avocado oil also decreased ROS generation in Fe2+-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.
Mitochondrion | 2008
Elizabeth Calderon-Cortes; Christian Cortés-Rojo; Monica Clemente-Guerrero; Salvador Manzo-Avalos; Rafael Villalobos-Molina; Istvan Boldogh; Alfredo Saavedra-Molina
We studied whether mitochondrial functions and Ca2+ metabolism were altered in Wistar Kyoto normotensive (WKY) and spontaneous hypertensive rats (SHR). Ca2+ uptake was decreased in SHR compared to WKY rats. Accumulation of Ca2+ was more efficient in WKY than in SHR rats. mDeltaPsi was lower in SHR compared to WKY rats. Basal complex IV activity was higher in SHR than WKY rats, whereas basal L-citrulline production, an indicator of nitric oxide synthesis, was decreased in SHR and dependent on Ca2+ concentration (p<0.05). Impact of Ca2+ was counteracted by EGTA. These data show an age-dependent decreased mitochondrial functions in brain mitochondria during hypertension.
Free Radical Research | 2007
Christian Cortés-Rojo; Elizabeth Calderon-Cortes; Monica Clemente-Guerrero; Salvador Manzo-Avalos; Salvador Uribe; Istvan Boldogh; Alfredo Saavedra-Molina
The deleterious effects of H2O2 on the electron transport chain of yeast mitochondria and on mitochondrial lipid peroxidation were evaluated. Exposure to H2O2 resulted in inhibition of the oxygen consumption in the uncoupled and phosphorylating states to 69% and 65%, respectively. The effect of H2O2 on the respiratory rate was associated with an inhibition of succinate-ubiquinone and succinate-DCIP oxidoreductase activities. Inhibitory effect of H2O2 on respiratory complexes was almost completely recovered by β-mercaptoethanol treatment. H2O2 treatment resulted in full resistance to QO site inhibitor myxothiazol and thus it is suggested that the quinol oxidase site (QO) of complex III is the target for H2O2. H2O2 did not modify basal levels of lipid peroxidation in yeast mitochondria. However, H2O2 addition to rat brain and liver mitochondria induced an increase in lipid peroxidation. These results are discussed in terms of the known physiological differences between mammalian and yeast mitochondria.
Journal of Bioenergetics and Biomembranes | 2011
Christian Cortés-Rojo; Mirella Estrada-Villagómez; Elizabeth Calderon-Cortes; Monica Clemente-Guerrero; Ricardo Mejía-Zepeda; Istvan Boldogh; Alfredo Saavedra-Molina
The mitochondrial electron transport chain (ETC) contains thiol groups (−SH) which are reversibly oxidized to modulate ETC function during H2O2 overproduction. Since deleterious effects of H2O2 are not limited to –SH oxidation, due to the formation of other H2O2-derived species, some processes like lipoperoxidation could enhance the effects of H2O2 over ETC enzymes, disrupt their modulation by –SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H2O2 on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H2O2 and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.
Journal of Bioenergetics and Biomembranes | 2014
Roxana Aguilar-Toral; Maricela Fernández-Quintero; Omar Ortiz-Avila; Lucio Hernández de la Paz; Elizabeth Calderon-Cortes; Alain R. Rodríguez-Orozco; Alfredo Saavedra-Molina; Marissa Calderón-Torres; Christian Cortés-Rojo
Increased membrane unsaturation has been associated with shorter longevity due to higher sensitivity to lipid peroxidation (LP) leading to enhanced mitochondrial dysfunction and ROS overproduction. However, the role of LP during aging has been put in doubt along with the participation of electron leak at the electron transport chain (ETC) in ROS generation in aged organisms. Thus, to test these hypothesis and gain further information about how minimizing LP preserves ETC function during aging, we studied the effects of α-linolenic acid (C18:3) on in situ mitochondrial ETC function, ROS production and viability of chronologically aged cells of S. cerevisiae, whose membranes are intrinsically resistant to LP due to the lack of PUFA. Increased sensitivity to LP was observed in cells cultured with C18:3 at 6xa0days of aging. This was associated with higher viability loss, dissipated membrane potential, impaired respiration and increased ROS generation, being these effects more evident at 28xa0days. However, at this point, lower sensitivity to LP was observed without changes in the membrane content of C18:3, suggesting the activation of a mechanism counteracting LP. The cells without C18:3 display better viability and mitochondrial functionality with lower ROS generation even at 28xa0days of aging and this was attributed to full preservation of complex III activity. These results indicate that the presence of PUFA in membranes enhances ETC dysfunction and electron leak and suggest that complex III is crucial to preserve membrane potential and to maintain a low rate of ROS production during aging.