Christian D. Howard
Ames Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian D. Howard.
The Astrophysical Journal | 2010
Juntai Shen; R. Michael Rich; John Kormendy; Christian D. Howard; Roberto De Propris; Andrea Kunder
Bulges are commonly believed to form in the dynamical violence of galaxy collisions and mergers. Here, we model the stellar kinematics of the Bulge Radial Velocity Assay (BRAVA) and find no sign that the Milky Way contains a classical bulge formed by scrambling pre-existing disks of stars in major mergers. Rather, the bulge appears to be a bar seen somewhat end-on, as hinted from its asymmetric boxy shape. We construct a simple but realistic N-body model of the Galaxy that self-consistently develops a bar. The bar immediately buckles and thickens in the vertical direction. As seen from the Sun, the result resembles the boxy bulge of our Galaxy. The model fits the BRAVA stellar kinematic data covering the whole bulge strikingly well with no need for a merger-made classical bulge. The bar in our best-fit model has a half-length of ~4 kpc and extends 20° from the Sun-Galactic center line. We use the new kinematic constraints to show that any classical bulge contribution cannot be larger than ~8% of the disk mass. Thus, the Galactic bulge is a part of the disk and not a separate component made in a prior merger. Giant, pure-disk galaxies like our own present a major challenge to the standard picture in which galaxy formation is dominated by hierarchical clustering and galaxy mergers.
The Astronomical Journal | 2012
Andrea Kunder; Andreas Koch; R. Michael Rich; Roberto De Propris; Christian D. Howard; Scott A. Stubbs; Christian I. Johnson; Juntai Shen; Yougang G. Wang; A. C. Robin; John Kormendy; Mario Soto; Peter M. Frinchaboy; David B. Reitzel; HongSheng Zhao; L. Origlia
We present new radial velocity measurements from the Bulge Radial Velocity Assay, a large-scale spectroscopic survey of M-type giants in the Galactic bulge/bar region. The sample of ~4500 new radial velocities, mostly in the region –10° < l < +10° and b ≈ –6°, more than doubles the existent published data set. Our new data extend our rotation curve and velocity dispersion profile to +20°, which is ~2.8 kpc from the Galactic center. The new data confirm the cylindrical rotation observed at –6° and –8° and are an excellent fit to the Shen et al. N-body bar model. We measure the strength of the TiOe molecular band as a first step toward a metallicity ranking of the stellar sample, from which we confirm the presence of a vertical abundance gradient. Our survey finds no strong evidence of previously unknown kinematic streams. We also publish our complete catalog of radial velocities, photometry, TiO band strengths, and spectra, which is available at the Infrared Science Archive as well as at UCLA.
The Astrophysical Journal | 2008
Christian D. Howard; R. Michael Rich; David B. Reitzel; Andreas Koch; Roberto De Propris; HongSheng Zhao
Results from the ongoing Bulge Radial Velocity Assay (BRAVA) are presented. BRAVA uses M red giant stars, selected from the 2MASS catalog to lie within a bound of reddening-corrected color and luminosity, as targets for the Cerro Tololo Inter-American Observatory 4 m Hydra multiobject spectrograph. Three years of observations investigate the kinematics of the Galactic bulge major (–10° < l < + 10°, b = − 4°) and minor (–6° < b < + 5°, -0.4° < l < 0.0°) axes with ~3300 radial velocities from 32 bulge fields and one disk field. We construct a longitude-velocity plot for the bulge stars and find that, contrary to previous studies, the bulge does not rotate as a solid body; from –4° < l < + 4° the rotation curve has a slope of roughly 100 km s−1 kpc−1 and flattens considerably at greater l, reaching a maximum rotation of 75 km s−1. We compare our rotation curve and velocity dispersion profile both to the self-consistent model of Zhao and to N-body models; neither fits both our observed rotation curve and velocity dispersion profile. We place the bulge on the plot of Vmax/σ vs. epsilon and find that the bulge lies near the oblate rotator line and very close to the parameters of NGC 4565, an edge-on spiral galaxy with a bulge similar to that of the Milky Way. We find that our summed velocity distribution of bulge stars appears to be sampled from a Gaussian distribution, with σ = 116 ± 2 km s−1 for our full data set. Two candidate cold streams are not confirmed with additional data.
The Astrophysical Journal | 2009
Christian D. Howard; R. Michael Rich; W. I. Clarkson; Ryan P. Mallery; John Kormendy; Roberto De Propris; A. C. Robin; Roger Fux; David B. Reitzel; HongSheng Zhao; Konrad Kuijken; Andreas Koch
We present new results from BRAVA, a large-scale radial velocity survey of the Galactic bulge, using M giant stars selected from the Two Micron All Sky Survey catalog as targets for the Cerro Tololo Inter-American Observatory 4 m Hydra multi-object spectrograph. The purpose of this survey is to construct a new generation of self-consistent bar models that conform to these observations. We report the dynamics for fields at the edge of the Galactic bulge at latitudes b = –8° and compare to the dynamics at b = –4°. We find that the rotation curve V(r) is the same at b = –8° as at b = –4°. That is, the Galactic boxy bulge rotates cylindrically, as do boxy bulges of other galaxies. The summed line-of-sight velocity distribution at b = –8° is Gaussian, and the binned longitude-velocity plot shows no evidence for either a (disk) population with cold dynamics or for a (classical bulge) population with hot dynamics. The observed kinematics are well modeled by an edge-on N-body bar, in agreement with published structural evidence. Our kinematic observations indicate that the Galactic bulge is a prototypical product of secular evolution in galaxy disks, in contrast with stellar population results that are most easily understood if major mergers were the dominant formation process.
The Astrophysical Journal | 2007
R. Michael Rich; David B. Reitzel; Christian D. Howard; HongSheng Zhao
We are undertaking a large-scale radial velocity survey of the Galactic bulge that uses M giant stars selected from the Two Micron All Sky Survey catalog as targets for the Cerro Tololo Inter-American Observatory 4 m Hydra multiobject spectrograph. The aim of this survey is to test dynamical models of the bulge and to quantify the importance, if any, of cold stellar streams in the bulge and its vicinity. Here we report on the kinematics of a strip of fields at -10° < l < +10° and b = -4°. We construct a longitude-velocity plot for the bulge stars and the model data and find that, contrary to previous studies, the bulge does not rotate as a solid body. From -5° < l < +5° the rotation curve has a slope of roughly 100 km s-1 kpc-1 and flattens considerably at greater l, reaching a maximum rotation of 45 km s-1. We compare our rotation curve and velocity dispersion profile to both the self-consistent model of Zhao and to N-body models; neither fits both our observed rotation curve and velocity dispersion profile. The high precision of our radial velocities (~3 km s-1) yields an unexpected result: hints of cold kinematic features are seen in a number of the line-of-sight velocity distributions.
Publications of the Astronomical Society of the Pacific | 2013
W. R. F. Dent; Wing-Fai Thi; I. Kamp; Jonathan P. Williams; Francois Menard; S. J. Andrews; D. R. Ardila; G. Aresu; J.-C. Augereau; D. Barrado y Navascués; Sean David Brittain; A. Carmona; David R. Ciardi; W. C. Danchi; Jessica Donaldson; G. Duchene; C. Eiroa; D. Fedele; C. A. Grady; I. de Gregorio-Molsalvo; Christian D. Howard; N. Huélamo; Alexander V. Krivov; J. Lebreton; R. Liseau; C. Martin-Zaidi; Geoffrey S. Mathews; G. Meeus; I. Mendigutia; B. Montesinos
We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted similar to 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 mu m the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 mu m, [CII] at 157 mu m, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 mu m. Additionally, GASPS included continuum photometry at 70, 100 and 160 mu m, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 mu m was the brightest line seen in almost all objects, by a factor of similar to 10. Overall [OI]63 mu m detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 mu m detection of similar to 10(-5) M-circle dot. Normalising to a distance of 140 pc, 84% of objects with dust masses >= 10(-5) M-circle dot can be detected in this line in the present survey; 32% of those of mass 10(-6)-10(-5) M-circle dot, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were similar to 50%. For each association in the 5-20 Myr age range, similar to 2 stars remain detectable in [OI]63 mu m, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that similar to 18% of stars retain a gas-rich disk of total mass similar to 1 M-Jupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 mu m, [CII]157 mu m and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
Astronomy and Astrophysics | 2010
W. F. Thi; Geoffrey S. Mathews; Francois Menard; Peter Woitke; G. Meeus; Pablo Riviere-Marichalar; Christophe Pinte; Christian D. Howard; Aki Roberge; G. Sandell; Ilaria Pascucci; B. Riaz; C. A. Grady; W. R. F. Dent; Inga Kamp; Gaspard Duchene; J.-C. Augereau; E. Pantin; B. Vandenbussche; I. Tilling; Jonathan P. Williams; C. Eiroa; D. Barrado; J. M. Alacid; Sean M. Andrews; D. R. Ardila; G. Aresu; Sean David Brittain; David R. Ciardi; W. C. Danchi
Planets are formed in disks around young stars. With an age of similar to 10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [OI] and [CII] as part of the open-time large program GASPS. We complement this with continuum data and ground-based (12) CO 3-2 and (CO)-C-13 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [OI] line at 63 mu m. The other lines that were observed, [OI] at 145 mu m and [CII] at 157 mu m, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [(CO)-C-12]/[(CO)-C-13] = 69 suggests a dust mass for grains with radius < 1 mm of similar to 1.9 x 10(-4) M-circle dot (total solid mass of 3 x 10(-3) M-circle dot) and a gas mass of (0.5-5) x 10(-3) M-circle dot. The gas-to-dust mass may be lower than the standard interstellar value of 100.
Astronomy and Astrophysics | 2012
Pablo Riviere-Marichalar; Francois Menard; Wing-Fai Thi; Inga Kamp; B. Montesinos; G. Meeus; Peter Woitke; Christian D. Howard; G. Sandell; Linda Podio; W. R. F. Dent; I. Mendigutia; C. Pinte; G. J. White; D. Barrado
Line spectra of 68 Taurus T Tauri stars were obtained with the Herschel-PACS (Photodetector Array Camera and Spectrometer) instrument as part of the GASPS (GAS evolution in Protoplanetary Systems) survey of protoplanetary discs. A careful examination of the linescans centred on the [OI] 63.18 μm fine-structure line unveiled a line at 63.32 μm in some of these spectra. We identify this line with the 818 → 707 transition of ortho-water. It is detected confidently (i.e., >3σ) in eight sources, i.e., ∼24% of the sub-sample with gas-rich discs. Several statistical tests were used to search for correlations with other disc and stellar parameters such as line fluxes of [Oi] 6300 A and 63.18 μm; X-ray luminosity and continuum levels at 63 μm and 850 μm. Correlations are found between the water line fluxes and the [Oi] 63.18 μm line luminosity, the dust continuum, and possibly with the stellar X-ray luminosity. This is the first time that this line of warm water vapour has been detected in protoplanetary discs. We discuss its origins, in particular whether it comes from the inner disc and/or disc surface or from shocks in outflows and jets. Our analysis favours a disc origin, with the observed water vapour line produced within 2–3 AU from the central stars, where the gas temperature is of the order of 500–600 K.
Astronomy and Astrophysics | 2011
Wing Fai Thi; Francois Menard; G. Meeus; C. Martin-Zaidi; Peter Woitke; Eric Tatulli; M. Benisty; Inga Kamp; Ilaria Pascucci; Christophe Pinte; C. A. Grady; Sean David Brittain; G. J. White; Christian D. Howard; G. Sandell; C. Eiroa
Despite its importance in the thermal balance of the gas and in the determination of primeval planetary atmospheres, the chemistry in protoplanetary discs remains poorly constrained with only a handful of detected species. We observed the emission from the disc around the Herbig Be star HD 100546 with the PACS instrument in the spectroscopic mode on board the Herschel Space Telescope as part of the GaS in Protoplanetary Systems (GASPS) programme and used archival data from the DIGIT programme to search for the rotational emission of CH + . We detected in both datasets an emission line centred at 72.16µm that most likely corresponds to the J=5-4 rotational emission of CH + . The J=3-2 and 6-5 transitions are also detected albeit with lower c onfidence. Other CH + rotational lines in the PACS observations are blended with water lines. A rotational diagram analysis shows that the CH + gas is warm at 323 +2320 −151 K with a mass of∼3× 10 −14 -5× 10 −12 M ⊙. We modelled the CH + chemistry with the chemo-physical code ProDiMo using a disc density structure and grain parameters that match continuum observations and near- and mid-infrared interferometric data. The model suggests that CH + is most abundant at the location of the disc rim at 10-13 AU from the star where the gas is warm, which is consistent with previous observations of hot CO gas emission.
Astronomy and Astrophysics | 2010
G. Meeus; Christophe Pinte; Peter Woitke; B. Montesinos; I. Mendigutia; Pablo Riviere-Marichalar; C. Eiroa; Geoffrey S. Mathews; B. Vandenbussche; Christian D. Howard; Aki Roberge; G. Sandell; Gaspard Duchene; Francois Menard; C. A. Grady; William R. F. Dent; Inga Kamp; J.-C. Augereau; W. F. Thi; I. Tilling; J. M. Alacid; Sean M. Andrews; D. R. Ardila; G. Aresu; D. Barrado; Sean David Brittain; David R. Ciardi; W. C. Danchi; D. Fedele; I. de Gregorio-Monsalvo
In an effort to simultaneously study the gas and dust components of the disc surrounding the young Herbig Ae star HD 169142, we present far-IR observations obtained with the PACS instrument onboard the Herschel Space Observatory. This work is part of the open time key program GASPS, which is aimed at studying the evolution of protoplanetary discs. To constrain the gas properties in the outer disc, we observed the star at several key gas-lines, including [OI] 63.2 and 145.5 mu m, [CII] 157.7 mu m, CO 72.8 and 90.2 mu m, and o-H2O 78.7 and 179.5 mu m. We only detect the [OI] 63.2 mu m line in our spectra, and derive upper limits for the other lines. We complement our data set with PACS photometry and (CO)-C-12/13 data obtained with the Submillimeter Array. Furthermore, we derive accurate stellar parameters from optical spectra and UV to mm photometry. We model the dust continuum with the 3D radiative transfer code MCFOST and use this model as an input to analyse the gas lines with the thermo-chemical code ProDIMo. Our dataset is consistent with a simple model in which the gas and dust are well-mixed in a disc with a continuous structure between 20 and 200 AU, but this is not a unique solution. Our modelling effort allows us to constrain the gas-to-dust mass ratio as well as the relative abundance of the PAHs in the disc by simultaneously fitting the lines of several species that originate in different regions. Our results are inconsistent with a gas-poor disc with a large UV excess; a gas mass of 5.0 +/- 2.0 x 10(-3) M-circle dot is still present in this disc, in agreement with earlier CO observations.