Christian Ethé
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Ethé.
Geophysical Research Letters | 2004
Fabien Durand; S. R. Shetye; Jérôme Vialard; D. Shankar; S. S. C. Shenoi; Christian Ethé; Gurvan Madec
Temperature inversions are known to occur in the near-surface ocean regime where salinity stratification is large enough to influence the density field. However, they have not been known as features that alter near-surface processes significantly to influence the sea surface temperature (SST). From the analysis of new observed datasets as well as of state-of-the-art numerical model outputs, this paper shows that heat trapped within a temperature inversion makes significant contribution to warming of the SST in the South-Eastern Arabian Sea during the pre-southwest monsoon season.
Journal of Climate | 2007
Clément de Boyer Montégut; Jérôme Vialard; S. S. C. Shenoi; D. Shankar; Fabien Durand; Christian Ethé; Gurvan Madec
A global ocean general circulation model (OGCM) is used to investigate the mixed layer heat budget of the northern Indian Ocean (NIO). The model is validated against observations and shows fairly good agreement with mixed layer depth data in the NIO. The NIO has been separated into three subbasins: the western Arabian Sea (AS), the eastern AS, and the Bay of Bengal (BoB). This study reveals strong differences between the western and eastern AS heat budget, while the latter basin has similarities with the BoB. Interesting new results on seasonal time scales are shown. The penetration of solar heat flux needs to be taken into account for two reasons. First, an average of 28 W m 2 is lost beneath the mixed layer over the year. Second, the penetration of solar heat flux tends to reduce the effect of solar heat flux on the SST seasonal cycle in the AS because the seasons of strongest flux are also seasons with a thin mixed layer. This enhances the control of SST seasonal variability by latent heat flux. The impact of salinity on SST variability is demonstrated. Salinity stratification plays a clear role in maintaining a high winter SST in the BoB and eastern AS while not in the western AS. The presence of freshwater near the surface allows heat storage below the surface layer that can later be recovered by entrainment warming during winter cooling (with a winter contribution of 2.1°C in the BoB). On an interannual time scale, the eastern AS and BoB are strongly controlled by the winds through the latent heat flux anomalies. In the western AS, vertical processes, as well as horizontal advection, contribute significantly to SST interannual variability, and the wind is not the only factor controlling the heat flux forcing.
Geophysical Research Letters | 2015
Rong Wang; Y. Balkanski; Laurent Bopp; Olivier Aumont; Olivier Boucher; Philippe Ciais; Marion Gehlen; Josep Peñuelas; Christian Ethé; D. A. Hauglustaine; Bengang Li; Junfeng Liu; Feng Zhou; Shu Tao
Abstract Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from −15.2 ± 1.8 to −13.3 ± 1.6 Pg C yr−1 °C−1 in global stratified oceans during 1948–2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming.
Global Biogeochemical Cycles | 2012
Marina Lévy; Matthieu Lengaigne; Laurent Bopp; Emmanuel Vincent; Gurvan Madec; Christian Ethé; D. Kumar; V. V. S. S. Sarma
Previous case studies have illustrated the strong local influence of tropical cyclones (TCs) on CO2 air-sea flux (FCO2), suggesting that they can significantly contribute to the global FCO2. In this study, we use a state-of-the art global ocean biochemical model driven by TCs wind forcing derived from a historical TCs database, allowing to sample the FCO2 response under 1663 TCs. Our results evidence a very weak contribution of TCs to global FCO2, one or two order of magnitude smaller than previous estimates extrapolated from case studies. This result arises from several competing effects involved in the FCO2 response to TCs, not accounted for in previous studies. While previous estimates have hypothesized the ocean to be systematically oversaturated in CO2 under TCs, our results reveal that a similar proportion of TCs occur over oversaturated regions (i.e. the North Atlantic, Northeast Pacific and the Arabian Sea) and undersaturated regions (i.e. Westernmost North Pacific, South Indian and Pacific Ocean). Consequently, by increasing the gas exchange coefficient, TCs can generate either instantaneous CO2 flux directed from the ocean to the atmosphere (efflux) or the opposite (influx), depending on the CO2 conditions at the time of the TC passage. A large portion of TCs also occurs over regions where the ocean and the atmosphere are in near equilibrium, resulting in very weak instantaneous fluxes. Previous estimates did also not account for any asynchronous effect of TCs on FCO2: during several weeks after the storm, oceanic pCO2 is reduced in response to vertical mixing, which systematically causes an influx anomaly. This implies that, contrary to previous estimates, TCs weakly affect the CO2 efflux when they blow over supersaturated areas because the instantaneous storm wind effect and post-storm mixing effect oppose with each other. In contrast, TCs increase the CO2 influx in undersaturated conditions because the two effects add up. These compensating effects result in a very weak contribution to global FCO2 and a very modest contribution to regional interannual variations (up to 10%).
Global Biogeochemical Cycles | 2016
Christophe E. Menkes; Matthieu Lengaigne; Marina Lévy; Christian Ethé; Laurent Bopp; Olivier Aumont; Emmanuel Vincent; Jérôme Vialard; Swen Jullien
In this paper, we explore the global responses of surface temperature, chlorophyll, and primary production to tropical cyclones (TCs). Those ocean responses are first characterized from the statistical analysis of satellite data under ~1000 TCs over the 1998–2007 period. Besides the cold wake, the vast majority of TCs induce a weak chlorophyll response, with only ~10% of induced blooms exceeding 0.1 mg m . The largest chlorophyll responses mostly occur within coastal regions, in contrast to the strongest cold wakes that generally occur farther offshore. To understand this decoupling, we analyze a coupled dynamical-biogeochemical oceanic simulation forced by realistic wind vortices applied along observed TC tracks. The simulation displays a realistic spatial structure of TC-induced blooms and its observed decoupling with TC cold wakes. In regions of strong TC energy input, the strongest cold wakes occur in regions of shallow thermocline (<60 m) and the strongest blooms in regions of shallow nitracline and/or subsurface chlorophyll maximum (<60 m). Shallow thermoclines are found over many open ocean regions, while regions of shallow nitracline and/or subsurface chlorophyll maximum are most prominent in near-coastal areas, explaining the spatial decoupling between the cold and bloom wakes. The overall TC contribution to annual primary production is weak and amounts to ~1%, except in a few limited areas (east Eurasian coast, South tropical Indian Ocean, Northern Australian coast, and Eastern Pacific Ocean in the TC-prone region) where it can locally reach up to 20–30%. Nearly 80% of this TC-induced annual primary production is the result of the biogeochemical response to the 30% strongest TCs.
Biogeosciences Discussions | 2018
Jens Terhaar; James C. Orr; M. Gehlen; Christian Ethé; L. Bopp
CE1 TS2The Arctic Ocean is projected to experience not only amplified climate change but also amplified ocean acidification. Modeling future acidification depends on our ability to simulate baseline conditions and changes over the industrial era. Such centennial-scale changes require a global model to account for exchange between the Arctic and surrounding regions. Yet the coarse resolution of typical global models may poorly resolve that exchange as well as critical features of Arctic Ocean circulation. Here we assess how simulations of Arctic Ocean storage of anthropogenic carbon (Cant), the main driver of open-ocean acidification, differ when moving from coarse to eddy-admitting resolution in a global ocean-circulation–biogeochemistry model (Nucleus for European Modeling of the Ocean, NEMO; Pelagic Interactions Scheme for Carbon and Ecosystem Studies, PISCES). The Arctic’s regional storage of Cant is enhanced as model resolution increases. While the coarse-resolution model configuration ORCA2 (2) stores 2.0 Pg C in the Arctic Ocean between 1765 and 2005, the eddy-admitting versions ORCA05 and ORCA025 (1/2 and 1/4) store 2.4 and 2.6 Pg C. The difference in inventory between model resolutions that is accounted for is only from their divergence after 1958, when ORCA2 and ORCA025 were initialized with output from the intermediate-resolution ORCA05. The difference would have been larger had all model resolutions been initialized in 1765 as was ORCA05. The ORCA25 Arctic Cant storage estimate of 2.6 Pg C should be considered a lower limit because that model generally underestimates observed CFC-12 concentrations. It reinforces the lower limit from a previous data-based approach (2.5 to 3.3 Pg C). Independent of model resolution, there was roughly 3 times as much Cant that entered the Arctic Ocean through lateral transport than via the flux of CO2 across the air–sea interface. Wider comparison to nine earth system models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) reveals much larger diversity of stored Cant and lateral transport. Only the CMIP5 models with higher lateral transport obtain Cant inventories that are close to the databased estimates. Increasing resolution also enhances acidification, e.g., with greater shoaling of the Arctic’s average depth of the aragonite saturation horizon during 1960– 2012, from 50 m in ORCA2 to 210 m in ORCA025. Even higher model resolution would likely further improve such estimates, but its prohibitive costs also call for other more practical avenues for improvement, e.g., through model nesting, addition of coastal processes, and refinement of subgridscale parameterizations.
Ocean Modelling | 2005
Ralph Timmermann; Hugues Goosse; Gurvan Madec; Thierry Fichefet; Christian Ethé; Valérie Dulière
Biogeosciences | 2007
Marion Gehlen; R. Gangstø; B. Schneider; Laurent Bopp; Olivier Aumont; Christian Ethé
Biogeosciences Discussions | 2007
M. Gehlen; R. Gangstø; Birgit Schneider; L. Bopp; Olivier Aumont; Christian Ethé
Geoscientific Model Development | 2015
Olivier Aumont; Christian Ethé; Alessandro Tagliabue; L. Bopp; M. Gehlen