Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Gerecke is active.

Publication


Featured researches published by Christian Gerecke.


Journal of Controlled Release | 2016

Tailored dendritic core-multishell nanocarriers for efficient dermal drug delivery: A systematic top-down approach from synthesis to preclinical testing

Stefan Hönzke; Christian Gerecke; Anja Elpelt; Nan Zhang; Michael Unbehauen; Vivian Kral; Emanuel Fleige; Florian Paulus; Rainer Haag; Monika Schäfer-Korting; Burkhard Kleuser; Sarah Hedtrich

Drug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines. To circumvent this issue, three tailored ester-based CMS nanocarriers (10-E-12-350, 10-E-15-350, 10-E-18-350) of varying inner alkyl chain length were synthesized and comprehensively characterized in terms of particle size, drug loading, biodegradation and dermal drug delivery efficiency. Dexamethasone (DXM), a potent drug widely used for the treatment of inflammatory skin diseases, was chosen as a therapeutically relevant test compound for the present study. Ester- and amide-based CMS nanocarriers delivered DXM more efficiently into human skin than a commercially available DXM cream. Subsequent in vitro and in vivo toxicity studies identified CMS (10-E-15-350) as the most biocompatible carrier system. The anti-inflammatory potency of DXM-loaded CMS (10-E-15-350) nanocarriers was assessed in TNFα supplemented skin models, where a significant reduction of the pro-inflammatory cytokine IL-8 was seen, with markedly greater efficacy than commercial DXM cream. In summary, we report the rational design and characterization of tailored, biodegradable, ester-based CMS nanocarriers, and their subsequent stepwise screening for biocompatibility, dermal delivery efficiency and therapeutic efficacy in a top-down approach yielding the best carrier system for topical applications.


European Journal of Pharmaceutics and Biopharmaceutics | 2017

Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium

Benjamin Balzus; Fitsum Feleke Sahle; Stefan Hönzke; Christian Gerecke; Fabian Schumacher; Sarah Hedtrich; Burkhard Kleuser; Roland Bodmeier

&NA; Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone‐loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3–0.7%) than ethyl cellulose nanoparticles (1.4–2.2%). By blending the two polymers (1:1), small (105 nm), positively charged (+37 mV) nanoparticles with sufficient dexamethasone loading (1.3%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness. Graphical abstract Figure. No caption available.


European Journal of Pharmaceutical Sciences | 2016

Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential.

Fitsum Feleke Sahle; Benjamin Balzus; Christian Gerecke; Burkhard Kleuser; Roland Bodmeier

pH-sensitive nanoparticles which release in a controlled fashion on the skin or dissolve in the hair follicle could significantly improve treatment effectiveness and make transfollicular drug delivery a success. Dexamethasone-loaded Eudragit® L 100 nanoparticles were prepared by nanoprecipitation from an organic drug-polymer solution. Their toxicity potential was assessed using isolated human fibroblasts. pH-dependent swelling and erosion kinetics of the nanoparticles were investigated by dynamic light scattering and viscosity measurements and its effect on drug release was assessed in vitro with Franz diffusion cells. Stable, 100-550nm-sized dexamethasone-loaded Eudragit® L 100 nanoparticles with drug loading capacity and entrapment efficiency as high as 8.3% and 85%, respectively, were obtained by using polyvinyl alcohol as a stabilizer and ethanol as organic solvent. The nanoparticles showed little or no toxicity on isolated normal human fibroblasts. Dexamethasone existed in the nanoparticles as solid solution or in amorphous form. The nanoparticles underwent extensive swelling and slow drug release in media with a low buffer capacity (as low as 10mM) and a higher pH or at a pH close to the dissolution pH of the polymer (pH6) and a higher buffer capacity. In 40mM buffer and above pH6.8, the nanoparticles eroded fast or dissolved completely and thus released the drug rapidly. pH-sensitive nanoparticles which potentially release in a controlled manner on the stratum corneum but dissolve in the hair follicle could be prepared.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

Stratum corneum targeting by dendritic core-multishell-nanocarriers in a mouse model of psoriasis

Hannah Pischon; Moritz Radbruch; Anja Ostrowski; Pierre Volz; Christian Gerecke; Michael Unbehauen; Stefan Hönzke; Sarah Hedtrich; Joachim W. Fluhr; Rainer Haag; Burkhard Kleuser; Ulrike Alexiev; Achim D. Gruber; Lars Mundhenk

Inflammatory disorders of the skin pose particular therapeutic challenges due to complex structural and functional alterations of the skin barrier. Penetration of several anti-inflammatory drugs is particularly problematic in psoriasis, a common dermatitis condition with epidermal hyperplasia and hyperkeratosis. Here, we tested in vivo dermal penetration and biological effects of dendritic core-multishell-nanocarriers (CMS) in a murine skin model of psoriasis and compared it to healthy skin. In both groups, CMS exclusively localized to the stratum corneum of the epidermis with only very sporadic uptake by Langerhans cells. Furthermore, penetration into the viable epidermis of nile red as a model for lipophilic compounds was enhanced by CMS. CMS proved fully biocompatible in several in vitro assays and on normal and psoriatic mouse skin. The observations support the concept of CMS as promising candidates for drug delivery in inflammatory hyperkeratotic skin disorders in vivo.


Cancer Prevention Research | 2013

Ultrasensitive Detection of Unknown Colon Cancer-Initiating Mutations Using the Example of the Adenomatous Polyposis Coli Gene

Christian Gerecke; Conny Mascher; Uwe Gottschalk; Burkhard Kleuser; Bettina Scholtka

Detection of cancer precursors contributes to cancer prevention, for example, in the case of colorectal cancer. To record more patients early, ultrasensitive methods are required for the purpose of noninvasive precursor detection in body fluids. Our aim was to develop a method for enrichment and detection of known as well as unknown driver mutations in the Adenomatous polyposis coli (APC) gene. By coupled wild-type blocking (WTB) PCR and high-resolution melting (HRM), referred to as WTB-HRM, a minimum detection limit of 0.01% mutant in excess wild-type was achieved according to as little as 1 pg mutated DNA in the assay. The technique was applied to 80 tissue samples from patients with colorectal cancer (n = 17), adenomas (n = 50), serrated lesions (n = 8), and normal mucosa (n = 5). Any kind of known and unknown APC mutations (deletions, insertions, and base exchanges) being situated inside the mutation cluster region was distinguishable from wild-type DNA. Furthermore, by WTB-HRM, nearly twice as many carcinomas and 1.5 times more precursor lesions were identified to be mutated in APC, as compared with direct sequencing. By analyzing 31 associated stool DNA specimens all but one of the APC mutations could be recovered. Transferability of the WTB-HRM method to other genes was proven using the example of KRAS mutation analysis. In summary, WTB-HRM is a new approach for ultrasensitive detection of cancer-initiating mutations. In this sense, it appears especially applicable for noninvasive detection of colon cancer precursors in body fluids with excess wild-type DNA like stool. Cancer Prev Res; 6(9); 898–907. ©2013 AACR.


International Journal of Pharmaceutics | 2017

Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications

Fitsum Feleke Sahle; Christian Gerecke; Burkhard Kleuser; Roland Bodmeier

pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit® L 100, Eudragit® L 100-55, Eudragit® S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10mM pH 7.5 buffer and released>80% of the drug within 7h. The acrylate nanoparticles dissolved in 40mM pH 7.5 buffer and released 65-70% of the drug within 7h. The nanoparticles remained intact in 10 and 40mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained.


Nanotoxicology | 2017

Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes

Christian Gerecke; Alexander Edlich; Michael Giulbudagian; Fabian Schumacher; Nan Zhang; André Said; Guy Yealland; Silke B. Lohan; Falko Neumann; Martina C. Meinke; Nan Ma; Marcelo Calderón; Sarah Hedtrich; Monika Schäfer-Korting; Burkhard Kleuser

Abstract Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery.


European Journal of Pharmaceutics and Biopharmaceutics | 2017

Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin

Alexander Edlich; Christian Gerecke; Michael Giulbudagian; Falko Neumann; Sarah Hedtrich; Monika Schäfer-Korting; Nan Ma; Marcelo Calderón; Burkhard Kleuser

Graphical abstract Figure. No Caption available. Abstract Engineered nanogels are of high value for a targeted and controlled transport of compounds due to the ability to change their chemical properties by external stimuli. As it has been indicated that nanogels possess a high ability to penetrate the stratum corneum, it cannot be excluded that nanogels interact with dermal dendritic cells, especially in diseased skin. In this study the potential crosstalk of the thermoresponsive nanogels (tNGs) with the dendritic cells of the skin was investigated with the aim to determine the immunotoxicological properties of the nanogels. The investigated tNGs were made of dendritic polyglycerol (dPG) and poly(glycidyl methyl ether‐co‐ethyl glycidyl ether) (p(GME‐co‐EGE)), as polymer conferring thermoresponsive properties. Although the tNGs were taken up, they displayed neither cytotoxic and genotoxic effects nor any induction of reactive oxygen species in the tested cells. Interestingly, specific uptake mechanisms of the tNGs by the dendritic cells were depending on the nanogels cloud point temperature (Tcp), which determines the phase transition of the nanoparticle. The study points to caveolae‐mediated endocytosis as being the major tNGs uptake mechanism at 37 °C, which is above the Tcp of the tNGs. Remarkably, an additional uptake mechanism, beside caveolae‐mediated endocytosis, was observed at 29 °C, which is the Tcp of the tNGs. At this temperature, which is characterized by two different states of the tNGs, macropinocytosis was involved as well. In summary, our study highlights the impact of thermoresponsivity on the cellular uptake mechanisms which has to be taken into account if the tNGs are used as a drug delivery system.


European Journal of Pharmaceutics and Biopharmaceutics | 2017

Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles – Composition-dependent skin penetration enhancement of a dye probe and biocompatibility

Nan Zhang; André Said; Christian Wischke; Vivian Kral; Robert Brodwolf; Pierre Volz; Alexander Boreham; Christian Gerecke; Wenzhong Li; Axel T. Neffe; Burkhard Kleuser; Ulrike Alexiev; Andreas Lendlein; Monika Schäfer-Korting

Graphical abstract Figure. No Caption available. Abstract Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile‐co‐(N‐vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1% and particle size ranged from 35 to 244 nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure.


Oncotarget | 2018

Vitamin C promotes decitabine or azacytidine induced DNA hydroxymethylation and subsequent reactivation of the epigenetically silenced tumour suppressor CDKN1A in colon cancer cells

Christian Gerecke; Fabian Schumacher; Alexander Edlich; Alexandra Wetzel; Guy Yealland; Lena Katharina Neubert; Bettina Scholtka; Thomas Homann; Burkhard Kleuser

Epigenetic silencing of tumour suppressor genes is a key hallmark of colorectal carcinogenesis. Despite this, the therapeutic potential of epigenetic agents capable of reactivating these silenced genes remains relatively unexplored. Evidence has shown the dietary antioxidant vitamin C (ascorbate) acts as an inducer of the ten-eleven translocation (TET) dioxygenases, an enzyme family that catalyses a recently described mechanism of DNA demethylation linked to gene re-expression. In this study, we set out to determine whether vitamin C can enhance the known anti-neoplastic actions of the DNA-demethylating agents decitabine (DAC) and azacytidine (AZA) in colorectal cancer cells. Administration of vitamin C alone significantly enhanced global levels of 5-hydroxymethyl-2’-deoxycytidine (5-hmdC), without altering 5-methyl-2’-deoxycytidine (5-mdC), as would be expected upon the activation of TET dioxygenases. Concomitant treatment of vitamin C with either AZA or DAC resulted in an unexpectedly high increase of global 5-hmdC levels, one that administration of any these compounds alone could not achieve. Notably, this was also accompanied by increased expression of the tumour suppressor p21 (CDKN1A), and a significant increase in apoptotic cell induction. Our in vitro data leads us to hypothesize that the reactivation of genes in colorectal cancer cells by AZA or DAC can be improved when the 5-hmdC levels are simultaneously increased by the TET activator vitamin C. The dual administration of demethylating agents and vitamin C to colorectal cancer patients, a demographic in which vitamin C deficiencies are common, may improve responses to epigenetic therapies.

Collaboration


Dive into the Christian Gerecke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Hedtrich

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Zhang

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Roland Bodmeier

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Stefan Hönzke

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge