Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Hedtrich is active.

Publication


Featured researches published by Sarah Hedtrich.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules

Madeleine Witting; Maria Molina; Katja Obst; Roswitha Plank; Katja-Martina Eckl; Hans Christian Hennies; Marcelo Calderón; Wolfgang Frieß; Sarah Hedtrich

UNLABELLED Genetic skin diseases caused by mutations resulting in diminished protein synthesis could benefit from local substitution of the missing protein. Proteins, however, are excluded from topical applications due to their physicochemical properties. We prepared protein-loaded thermoresponsive poly(N-isopropylacrylamide)-polyglycerol-based nanogels exhibiting a thermal trigger point at 35°C, which is favorable for cutaneous applications due to the native thermal gradient of human skin. At≥35°C, the particle size (~200nm) was instantly reduced by 20% and 93% of the protein was released; no alterations of protein structure or activity were detected. Skin penetration experiments demonstrated efficient intraepidermal protein delivery particularly in barrier deficient skin, penetration of the nanogels themselves was not detected. The proof of concept was provided by transglutaminase 1-loaded nanogels which efficiently delivered the protein into transglutaminase 1-deficient skin models resulting in a restoration of skin barrier function. In conclusion, thermoresponsive nanogels are promising topical delivery systems for biomacromolecules. FROM THE CLINICAL EDITOR Many skin disorders are characterized by an absence of a specific protein due to underlying gene mutation. In this article, the authors described the use of a thermoresponsive PNIPAM-dPG nanogel for cutaneous protein delivery in a gene knock-down model of human skin. The results may have implication for nano-based local delivery of therapeutic agents in skin.


Journal of Investigative Dermatology | 2016

Influence of Th2 Cytokines on the Cornified Envelope, Tight Junction Proteins, and β-Defensins in Filaggrin-Deficient Skin Equivalents

Stefan Hönzke; Leonie Wallmeyer; Anja Ostrowski; Moritz Radbruch; Lars Mundhenk; Monika Schäfer-Korting; Sarah Hedtrich

Atopic dermatitis is a chronic skin condition with complex etiology. It is characterized by skin barrier defects and T helper type 2 (Th2)-polarized inflammation. Although mutations in the filaggrin gene are known to be prominent genetic risk factors for the development of atopic dermatitis, the interdependency between these and an altered cytokine milieu is not fully understood. In this study, we evaluated the direct effects of filaggrin deficiency on the cornified envelope, tight junction proteins, and innate immune response, and report the effects of Th2 cytokines in normal and filaggrin-deficient skin equivalents. Supplementation with IL-4 and IL-13 led to distinct histologic changes and significantly increased skin surface pH, both of which were enhanced in filaggrin knockdown skin equivalents. We detected a compensatory up-regulation of involucrin and occludin in filaggrin-deficient skin that was dramatically disturbed when simultaneous inflammation occurred. Furthermore, we found that a lack of filaggrin triggered an up-regulation of human ?-defensin 2 via an unknown mechanism, which was abolished by Th2 cytokine supplementation. Taken together, these results indicate that defects in the epidermal barrier, skin permeability, and cutaneous innate immune response are not primarily linked to filaggrin deficiency but are rather secondarily induced by Th2 inflammation.


Molecular Pharmaceutics | 2015

Interactions of hyaluronic Acid with the skin and implications for the dermal delivery of biomacromolecules.

Madeleine Witting; Alexander Boreham; Robert Brodwolf; Kateřina Vávrová; Ulrike Alexiev; Wolfgang Friess; Sarah Hedtrich

Hyaluronic acid (HA) hydrogels are interesting delivery systems for topical applications. Besides moisturizing the skin and improving wound healing, HA facilitates topical drug absorption and is highly compatible with labile biomacromolecules. Hence, in this study we investigated the influence of HA hydrogels with different molecular weights (5 kDa, 100 kDa, 1 MDa) on the skin absorption of the model protein bovine serum albumin (BSA) using fluorescence lifetime imaging microscopy (FLIM). To elucidate the interactions of HA with the stratum corneum and the skin absorption of HA itself, we combined FLIM and Fourier-transform infrared (FTIR) spectroscopy. Our results revealed distinct formulation and skin-dependent effects. In barrier deficient (tape-stripped) skin, BSA alone penetrated into dermal layers. When BSA and HA were applied together, however, penetration was restricted to the epidermis. In normal skin, penetration enhancement of BSA into the epidermis was observed when applying low molecular weight HA (5 kDa). Fluorescence resonance energy transfer analysis indicated close interactions between HA and BSA under these conditions. FTIR spectroscopic analysis of HA interactions with stratum corneum constituents showed an α-helix to β-sheet interconversion of keratin in the stratum corneum, increased skin hydration, and intense interactions between 100 kDa HA and the skin lipids resulting in a more disordered arrangement of the latter. In conclusion, HA hydrogels restricted the delivery of biomacromolecules to the stratum corneum and viable epidermis in barrier deficient skin, and therefore seem to be potential topical drug vehicles. In contrast, HA acted as an enhancer for delivery in normal skin, probably mediated by a combination of cotransport, increased skin hydration, and modifications of the stratum corneum properties.


Journal of Dermatological Science | 2015

Stimulation of PPARα normalizes the skin lipid ratio and improves the skin barrier of normal and filaggrin deficient reconstructed skin

Leonie Wallmeyer; Dominika Lehnen; Natascha Eger; Michaela Sochorová; Lukáš Opálka; Andrej Kováčik; Kateřina Vávrová; Sarah Hedtrich

BACKGROUND Therapeutic options for atopic dermatitis mostly address the symptoms but causal therapies are still missing. Peroxisome proliferator activated receptor (PPAR) agonists exert beneficial effects in patients suffering this disease, whereas the stimulation of PPARα and γ seemed most promising. OBJECTIVES To elucidate the effects of the PPARα specific agonist WY14643, the PPARγ agonist ciglitazone, and the dual PPARα+γ agonist docosahexaenoic acid (DHA) on the homeostasis and barrier function of filaggrin deficient skin. METHODS The effects of the PPAR agonists on skin differentiation were evaluated via qPCR, Western blot, histological or immunofluorescence staining. Skin lipid organization was determined by ATR-FTIR and lipid composition was analyzed by HPTLC. Ultimately, the skin barrier function was assessed by skin absorption studies using the radioactively labeled compound testosterone. RESULTS Significant upregulation of filaggrin after DHA and WY14643 supplementation, but no effect of ciglitazone, on protein and mRNA level was detected. DHA and WY14643, but not ciglitazone, normalized the molar ratio of the main skin barrier lipids to 1:1:1 (free fatty acids:ceramides:cholesterol). Furthermore, DHA and WY14643 supplementation normalized the skin lipid profile in filaggrin deficient skin, but only WY14643 significantly improved the skin barrier function. CONCLUSION Supplementation particularly with the PPARα agonist WY14643 improved the homeostasis and barrier function of filaggrin deficient skin models by normalization of the free fatty acid profile underlining the potential of PPAR agonists for the treatment of filaggrin-associated skin diseases.


Biotechnology Advances | 2015

Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers.

Madeleine Witting; Katja Obst; Wolfgang Friess; Sarah Hedtrich

Proteins and peptides are increasingly important therapeutics for the treatment of severe and complex diseases like cancer or autoimmune diseases due to their high specificity and potency. Their unique structure and labile physicochemical properties, however, require special attention in the production and formulation process as well as during administration. Aside from conventional systemic injections, the topical application of proteins and peptides is an appealing alternative due to its non-invasive nature and thus high acceptance by patients. For this approach, soft matter nanocarriers are interesting delivery systems which offer beneficial properties such as high biocompatibility, easiness of modifications, as well as targeted drug delivery and release. This review aims to highlight and discuss technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the skin, the eye, the nose, and the lung, and to provide insights in advantages, limitations, and practicability of recent advances.


Journal of Controlled Release | 2016

Development of biodegradable hyperbranched core-multishell nanocarriers for efficient topical drug delivery.

Fang Du; Stefan Hönzke; Falko Neumann; Juliane Keilitz; Wei Chen; Nan Ma; Sarah Hedtrich; Rainer Haag

The topical application of drugs allows for a local application in skin disease and can reduce side effects. Here we present biodegradable core-multishell (CMS) nanocarriers which are composed of a hyperbranched polyglycerol core functionalized with diblock copolymers consisting of polycaprolactone (PCL) and poly(ethylene glycol) (mPEG) as the outer shell. The anti-inflammatory drug Dexamethasone (Dexa) was loaded into these CMS nanocarriers. DLS results suggested that Dexa loaded nanoparticles mostly act as a unimolecular carrier system. With longer PCL segments, a better transport capacity is observed. In vitro skin permeation studies showed that CMS nanocarriers could improve the Nile red penetration through the skin by up to 7 times, compared to a conventional cream formulation. Interestingly, covalently FITC-labeled CMS nanocarriers remain in the stratum corneum layer. This suggests the enhancement is due to the release of cargo after being transported into the stratum corneum by the CMS nanocarriers. In addition, the hPG-PCL-mPEG CMS nanocarriers exhibited good stability, low cytotoxicity, and their production can easily be scaled up, which makes them promising nanocarriers for topical drug delivery.


Journal of Controlled Release | 2016

Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers.

Nadine Döge; Stefan Hönzke; Fabian Schumacher; Benjamin Balzus; Miriam Colombo; Sabrina Hadam; Fiorenza Rancan; Ulrike Blume-Peytavi; Monika Schäfer-Korting; Anke Schindler; E. Rühl; Per Stahl Skov; Martin K. Church; Sarah Hedtrich; Burkhard Kleuser; Roland Bodmeier; Annika Vogt

Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-term ex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin.


Journal of Controlled Release | 2016

Tailored dendritic core-multishell nanocarriers for efficient dermal drug delivery: A systematic top-down approach from synthesis to preclinical testing

Stefan Hönzke; Christian Gerecke; Anja Elpelt; Nan Zhang; Michael Unbehauen; Vivian Kral; Emanuel Fleige; Florian Paulus; Rainer Haag; Monika Schäfer-Korting; Burkhard Kleuser; Sarah Hedtrich

Drug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines. To circumvent this issue, three tailored ester-based CMS nanocarriers (10-E-12-350, 10-E-15-350, 10-E-18-350) of varying inner alkyl chain length were synthesized and comprehensively characterized in terms of particle size, drug loading, biodegradation and dermal drug delivery efficiency. Dexamethasone (DXM), a potent drug widely used for the treatment of inflammatory skin diseases, was chosen as a therapeutically relevant test compound for the present study. Ester- and amide-based CMS nanocarriers delivered DXM more efficiently into human skin than a commercially available DXM cream. Subsequent in vitro and in vivo toxicity studies identified CMS (10-E-15-350) as the most biocompatible carrier system. The anti-inflammatory potency of DXM-loaded CMS (10-E-15-350) nanocarriers was assessed in TNFα supplemented skin models, where a significant reduction of the pro-inflammatory cytokine IL-8 was seen, with markedly greater efficacy than commercial DXM cream. In summary, we report the rational design and characterization of tailored, biodegradable, ester-based CMS nanocarriers, and their subsequent stepwise screening for biocompatibility, dermal delivery efficiency and therapeutic efficacy in a top-down approach yielding the best carrier system for topical applications.


RSC Advances | 2015

Synthesis of multiarm star copolymers based on polyglycerol cores with polylactide arms and their application as nanocarriers

Mohsen Adeli; Hassan Namazi; Fang Du; Stefan Hönzke; Sarah Hedtrich; Juliane Keilitz; Rainer Haag

Hyperbranched polyglycerol (hPG) with two different molecular weights (hPG2400 and hPG8000) was used as a macroinitiator for the polymerization of lactide. Thereby, amphiphilic linear-dendritic multiarm star copolymers (MSCs) were prepared and investigated with regard to their ability to encapsulate and transport guest molecules. Various ratios of monomer to hydroxy functional end groups ([LA]/[OH]) were used for the preparation of linear-dendritic multiarm copolymers with different degrees of polymerization (DP), molecular weight, and arm multiplicity. At high molecular weights almost all of the hydroxy groups of hPG were reacted with the lactide monomer and the number of arms was equal to the number of hydroxy functional groups. The ability of the synthesized MSCs to encapsulate and transport small guest molecules was examined. The transport capacity (TC) of all nanocarriers under different conditions was investigated using the model dye Congo red as well as the model drug 5-aminosalicylic acid (5-ASA). With both hPG2400 and hPG8000 cores, the TC increased along with an increasing number and length of the arms. The dependence of the TC on the concentration of MSCs was also investigated and found to deteriorate with increasing polymer concentration. Finally the ability of the synthesized nanocarriers to penetrate into the skin and transport Nile red through this barrier was successfully investigated.


European Journal of Pharmaceutics and Biopharmaceutics | 2017

Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium

Benjamin Balzus; Fitsum Feleke Sahle; Stefan Hönzke; Christian Gerecke; Fabian Schumacher; Sarah Hedtrich; Burkhard Kleuser; Roland Bodmeier

&NA; Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone‐loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3–0.7%) than ethyl cellulose nanoparticles (1.4–2.2%). By blending the two polymers (1:1), small (105 nm), positively charged (+37 mV) nanoparticles with sufficient dexamethasone loading (1.3%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness. Graphical abstract Figure. No caption available.

Collaboration


Dive into the Sarah Hedtrich's collaboration.

Top Co-Authors

Avatar

Rainer Haag

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Hönzke

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Rühl

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katja Obst

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge