Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian H. Lemon is active.

Publication


Featured researches published by Christian H. Lemon.


Behavioral Neuroscience | 2000

Association of an Odor with Activation of Olfactory Bulb Noradrenergic β-Receptors or Locus Coeruleus Stimulation is Sufficient to Produce Learned Approach Responses to that Odor in Neonatal Rats

Regina M. Sullivan; G. Stackenwalt; F. Nasr; Christian H. Lemon; Donald A. Wilson

These experiments examined the sufficiency of pairing an odor with either intrabulbar activation of noradrenergic beta-receptors or pharmacological stimulation of the locus coeruleus to support learned odor preferences in Postnatal Day 6-7 rat pups. The results showed that pups exposed to odor paired with beta-receptor activation limited to the olfactory bulb (isoproterenol, 50 microM) displayed a conditioned approach response on subsequent exposure to that odor. Furthermore, putative stimulation of the locus coeruleus (2 microM idazoxan or 2 mM acetylcholine) paired with odor produced a subsequent preference for that odor. The effects of locus coeruleus stimulation could be blocked by a pretraining injection of the beta-receptor antagonist propranolol (20 mg/kg). Together these results suggest that convergence of odor input with norepinephrine release from the locus coeruleus terminals within the olfactory bulb is sufficient to support olfactory learning.


Physiological Genomics | 2010

T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference

Susan M. Brasser; Meghan B. Norman; Christian H. Lemon

Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol taste by measuring behavioral and central neurophysiological responses to oral alcohol in T1r3 receptor-deficient mice and their C57BL/6J background strain. T1r3 knockout and wild-type mice were tested in behavioral preference assays for long-term voluntary intake of a broad concentration range of ethanol, sucrose, and quinine. For neurophysiological experiments, separate groups of mice of each genotype were anesthetized, and taste responses to ethanol and stimuli of different taste qualities were electrophysiologically recorded from gustatory neurons in the nucleus of the solitary tract. Mice lacking the T1r3 receptor were behaviorally indifferent to alcohol (i.e., ∼50% preference values) at concentrations typically preferred by wild-type mice (5-15%). Central neural taste responses to ethanol in T1r3-deficient mice were significantly lower compared with C57BL/6J controls, a strain for which oral ethanol stimulation produced a concentration-dependent activation of sweet-responsive NTS gustatory neurons. An attenuated difference in ethanol preference between knockouts and controls at concentrations >15% indicated that other sensory and/or postingestive effects of ethanol compete with sweet taste input at high concentrations. As expected, T1r3 knockouts exhibited strongly suppressed behavioral and neural taste responses to sweeteners but did not differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. These data implicate the T1r3 receptor in the sensory detection and transduction of ethanol taste.


The Journal of Neuroscience | 2006

Influence of response variability on the coding performance of central gustatory neurons.

Christian H. Lemon; David V. Smith

We explored how variability in responding to taste stimuli could impact the signaling of taste quality information by neuron types and individual cells in the nucleus of the solitary tract. One hundred sixty-two neurons recorded from anesthetized rats were grouped using multivariate analysis of taste responses to the following (in m): 0.5 sucrose, 0.1 NaCl, 0.01 HCl, and 0.01 quinine-HCl. Neurons fell into one of three groups corresponding to cell types that responded optimally to sucrose, NaCl, or HCl. A statistical model was used to examine whether responses observed among neurons within each group could be correctly attributed to the optimal stimulus or another tastant on the basis of spike count. Results revealed poor classification performance in some cases attributable to wide variations in the sensitivities of neurons that compose a cell type. This outcome leads us to question whether neuron types could faithfully encode a single taste quality. We then theoretically explored whether a hypothetical observer of individual neurons could discriminate between spiking rates to different tastants during the first second of stimulus processing. Spike rate was found to be an unreliable predictor of stimulus quality for each neuron tested. However, additional analyses suggested that taste stimuli could be identified by a reader that attends to the relative spiking activities of different kinds of neurons in parallel. Rather than assigning meaning to individual neurons or categories of them, central gustatory circuits may signal quality information using a strategy that involves the relative activities of neurons with different sensitivities to tastants.


PLOS ONE | 2012

Bitter taste stimuli induce differential neural codes in mouse brain

David M. Wilson; John D. Boughter; Christian H. Lemon

A growing literature suggests taste stimuli commonly classified as “bitter” induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among “bitter” stimuli, data that challenge a strict monoguesia model for the bitter quality.


Journal of Neurophysiology | 2013

Modulation of central gustatory coding by temperature

David M. Wilson; Christian H. Lemon

Changes in oral temperature can influence taste perception, indicating overlap among mechanisms for taste and oral somesthesis. Medullary gustatory neurons can show cosensitivity to temperature, albeit how these cells process combined taste and thermal input is poorly understood. Here, we electrophysiologically recorded orosensory responses (spikes) from 39 taste-sensitive neurons in the nucleus tractus solitarii of anesthetized mice during oral delivery of tastants adjusted to innocuous cool (16 and 18°C), room (22°C, baseline), and warm (30 and 37°C) oral temperatures. Stimuli included (in mM) 100 sucrose, 30 NaCl, 3 HCl, 3 quinine, an umami mixture, and water. Although cooled water excited few cells, water warmed to 30 and 37°C significantly excited 33% and 64% of neurons, respectively. Warmth induced responses of comparable magnitude to room temperature tastants. Furthermore, warming taste solutions influenced the distribution of gustatory responses among neurons and increased (P < 0.05) neuronal breadth of tuning across taste qualities. The influence of warmth on response magnitude was stimulus specific. Across neurons, warming facilitated responses to sucrose and umami in a superadditive manner, as these responses exceeded (P < 0.05) the arithmetic sum of activity to warming alone and the taste stimulus tested at room temperature. Superadditive increases (P < 0.05) in responding were also noted in some cells for warmed HCl. Yet warming induced only simple additive or subtractive effects on responses to quinine and NaCl. Data show temperature is a parameter of gustatory processing, like taste quality and concentration, in medullary circuits for taste.


Addiction Biology | 2012

Chemosensory responsiveness to ethanol and its individual sensory components in alcohol-preferring, alcohol-nonpreferring and genetically heterogeneous rats

Susan M. Brasser; Bryant C. Silbaugh; Myles J. Ketchum; Jeffrey J. Olney; Christian H. Lemon

Alcohol activates orosensory circuits that project to motivationally relevant limbic forebrain areas that control appetite, feeding and drinking. To date, limited data exists regarding the contribution of chemosensory‐derived ethanol reinforcement to ethanol preference and consumption. Measures of taste reactivity to intra‐orally infused ethanol have not found differences in initial orofacial responses to alcohol between alcohol‐preferring (P) and alcohol‐non‐preferring (NP) genetically selected rat lines. Yet, in voluntary intake tests, P rats prefer highly concentrated ethanol upon initial exposure, suggesting an early sensory‐mediated attraction. Here, we directly compared self‐initiated chemosensory responding for alcohol and prototypic sweet, bitter and oral trigeminal stimuli among selectively bred P, NP and non‐selected Wistar (WI) outbred lines to determine whether differential sensory responsiveness to ethanol and its putative sensory components are phenotypically associated with genetically influenced alcohol preference. Rats were tested for immediate short‐term lick responses to alcohol (3–40%), sucrose (0.01–1 M), quinine (0.01–3 mM) and capsaicin (0.003–1 mM) in a brief‐access assay designed to index orosensory‐guided behavior. P rats exhibited elevated short‐term lick responses to both alcohol and sucrose relative to NP and WI lines across a broad range of concentrations of each stimulus and in the absence of blood alcohol levels that would produce significant post‐absorptive effects. There was no consistent relationship between genetically mediated alcohol preference and orosensory avoidance of quinine or capsaicin. These data indicate that enhanced initial chemosensory attraction to ethanol and sweet stimuli are phenotypes associated with genetic alcohol preference and are considered within the framework of downstream activation of oral appetitive reward circuits.


Journal of Neurophysiology | 2011

Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats

Christian H. Lemon; David M. Wilson; Susan M. Brasser

In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanols oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neurons sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.


Chemosensory Perception | 2015

Perceptual and Neural Responses to Sweet Taste in Humans and Rodents

Christian H. Lemon

IntroductionThis mini-review discusses some of the parallels between rodent neurophysiological and human psychophysical data concerning temperature effects on sweet taste.Methods and Purpose“Sweet” is an innately rewarding taste sensation that is associated in part with foods that contain calories in the form of sugars. Humans and other mammals show unconditioned preference for select sweet stimuli. Such preference is poised to influence diet selection and, in turn, nutritional status, which underscores the importance of delineating the physiological mechanisms for sweet taste with respect to their influence on human health. Advances in our knowledge of the biology of sweet taste in humans have arisen in part through studies on mechanisms of gustatory processing in rodent models. Along this line, recent work has revealed there are operational parallels in neural systems for sweet taste between mice and humans, as indexed by similarities in the effects of temperature on central neurophysiological and psychophysical responses to sucrose in these species. Such association strengthens the postulate that rodents can serve as effective models of particular mechanisms of appetitive taste processing. Data supporting this link are discussed here, as are rodent and human data that shed light on relationships between mechanisms for sweet taste and ingestive disorders, such as alcohol abuse.Results and ConclusionsRodent models have utility for understanding mechanisms of taste processing that may pertain to human flavor perception. Importantly, there are limitations to generalizing data from rodents, albeit parallels across species do exist.


Journal of Neurophysiology | 2015

Influence of stimulus and oral adaptation temperature on gustatory responses in central taste-sensitive neurons.

Jinrong Li; Christian H. Lemon

The temperature of taste stimuli can modulate gustatory processing. Perceptual data indicate that the adapted temperature of oral epithelia also influences gustation, although little is known about the neural basis of this effect. Here, we electrophysiologically recorded orosensory responses (spikes) to 25°C (cool) and 35°C (warm) solutions of sucrose (0.1 and 0.3 M), NaCl (0.004, 0.1, and 0.3 M), and water from taste-sensitive neurons in the nucleus of the solitary tract in mice under varied thermal adaptation of oral epithelia. Conditions included presentation of taste stimuli isothermal to adaptation temperatures of 25°C (constant cooling) and 35°C (constant warming), delivery of 25°C stimuli following 35°C adaptation (relative cooling), and presentation of 35°C stimuli following 25°C adaptation (relative warming). Responses to sucrose in sucrose-oriented cells (n = 15) were enhanced under the constant and relative warming conditions compared with constant cooling, where contiguous cooling across adaptation and stimulus periods induced the lowest and longest latency responses to sucrose. Yet compared with constant warming, cooling sucrose following warm adaptation (relative cooling) only marginally reduced activity to 0.1 M sucrose and did not alter responses to 0.3 M sucrose. Thus, warmth adaptation counteracted the attenuation in sucrose activity associated with stimulus cooling. Analysis of sodium-oriented (n = 25) neurons revealed adaptation to cool water, and cooling taste solutions enhanced unit firing to 0.004 M (perithreshold) NaCl, whereas warmth adaptation and stimulus warming could facilitate activity to 0.3 M NaCl. The concentration dependence of this thermal effect may reflect a dual effect of temperature on the sodium reception mechanism that drives sodium-oriented cells.


Chemical Senses | 2016

Separate functions for responses to oral temperature in thermo-gustatory and trigeminal neurons

Christian H. Lemon; Yi Kang; Jinrong Li

Oral temperature is a component and modifier of taste perception. Both trigeminal (V) and taste-sensitive cells, including those in the nucleus of the solitary tract (NTS), can respond to oral temperature. However, functional associations in thermal sensitivity between V and gustatory neurons are poorly understood. To study this we recorded electrophysiological responses to oral stimulation with cool (9, 15, 25, 32, and 34 °C) and warm (40 and 45 °C) temperatures from medullary V (n = 45) and taste-sensitive NTS (n = 27) neurons in anesthetized mice. Results showed temperatures below 34 °C activated the majority of V neurons but only a minority of NTS units. V neurons displayed larger responses to cooling and responded to temperatures that poorly stimulated NTS cells. Multivariate analyses revealed different temperatures induced larger differences in responses across V compared with NTS neurons, indicating V pathways possess greater capacity to signal temperature. Conversely, responses to temperature in NTS units associated with gustatory tuning. Further analyses identified two types of cooling-sensitive V neurons oriented toward innocuous or noxious cooling. Multivariate analyses indicated the combined response of these cells afforded distinction among a broad range of cool temperatures, suggesting multiple types of V neurons work together to represent oral cooling.

Collaboration


Dive into the Christian H. Lemon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinrong Li

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Susan M. Brasser

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenichi Tokita

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert F. Margolskee

Monell Chemical Senses Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge