Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Jungnickel is active.

Publication


Featured researches published by Christian Jungnickel.


Journal of Colloid and Interface Science | 2009

Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions

Justyna Łuczak; Christian Jungnickel; Monika Joskowska; Jorg Thöming; Jan Hupka

The structural similarity between some ionic liquids (ILs) and ionic surfactants, indicates that ILs are expected to exhibit surface adsorption and aggregation properties. The Krafft temperature and the temperature dependence of the critical micelle concentration (CMC) were determined for four imidazolium ionic liquids with varying chain length by measuring concentration dependence of electrical conductivity at different temperatures. The magnitude of the thermodynamic parameters of the micelle formation provide valuable information about the driving force of micellization of these compounds, therefore, the parameters of these chemicals were estimated from the degree of ionization, and the CMC. The thermodynamic parameters were correlated to directly measured values using isothermal titration calorimetry (ITC). It was found that the long-chained imidazolium ILs show similar thermodynamic characteristics as traditional cationic surfactants, whereas the Krafft temperature was shown to be lower than that of traditional cationic surfactants of similar chain length.


Green Chemistry | 2010

Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives

Justyna Łuczak; Christian Jungnickel; Izabela Łącka; Stefan Stolte; Jan Hupka

Knowledge of the structure–activity relationship (SAR) allows for the possibility to design and synthesize new cationic amphiphiles with optimized antimicrobial activities for future development of new disinfectants, sanitizers or preservatives. The need to design and identify new compounds, possessing antimicrobial properties, results from the emergence of more resistant micro-organisms in our globalized society. Hitherto, most studies which analyse the biological activity of ionic liquids (ILs) investigate the effect of the cation, whereas the knowledge of the effect of the anion is limited. The present study confirms the existence of a strong relationship among structure, surface activity and biological action of imidazolium ionic liquids on bacteria and fungi. The dependence of the antimicrobial activity on chemical structure–chain length and anion type of 30 compounds was determined. The anion is an important structural element which partakes in the definition of the phyiscochemical properties of the IL, and in consequence the technological applications and mode of action of the compound. The introduction of a longer substituent on the imidazolium cation results in a lower minimal inhibitory concentration (MIC). Thus, antifungal and antibacterial activities were found to increase with chain length, very often up to a point exhibiting a cut-off effect at chain lengths of 16 or 18 for the imidazolium cation and the [Cl] anion. The efficiency of surface tension reduction circumscribed by the pC20 and the relationship between antimicrobial activity and pC20 is described herein. The relationship indicates an antimicrobial mode of action dependant on the surface activity of the molecule, inferring that surface activity may contribute to the cut-off effect in the biological activity of ILs.


Journal of Physical Chemistry B | 2013

Solubilization of Benzene, Toluene, and Xylene (BTX) in Aqueous Micellar Solutions of Amphiphilic Imidazolium Ionic Liquids

Justyna Łuczak; Christian Jungnickel; Jan Hupka

Water-soluble ionic liquids may be considered analogues to cationic surfactants with a corresponding surface activity and ability to create organized structures in aqueous solutions. For the first time, the enhanced solubility of the aromatic hydrocarbons, benzene, toluene, and xylene, in aqueous micellar systems of 1-alkyl-3-methylimidazolium chlorides was investigated. Above a critical micelle concentration, a gradual increase in the concentration of aromatic hydrocarbons in the miceller solution was observed. This phenomenon was followed by means of the molar solubilization ratio, the micellar/water partition coefficient, and the number of solubilizate molecules per IL micelle. The molar solubilization ratio for ionic liquid micelles was found to be significantly higher when compared to that of ionic surfactants of similar chain length. The incorporation of the hydrocarbon into the micelle affects also an increase of the aggregation number.


Environmental Chemistry | 2008

Determination of the adsorption mechanism of imidazolium-type ionic liquids onto kaolinite: implications for their fate and transport in the soil environment

Wojciech Mrozik; Christian Jungnickel; Michał Skup; Piotr Urbaszek; Piotr Stepnowski

Environmental context. The present paper looks at the possible spreading of a new class of chemicals, namely, ionic liquids in soils. These ionic liquids have gained increasing attention, and their environmental impact and fate needs to be determined before accidental release. The paper specifically focusses on the adhesion mechanisms of these chemicals onto a type of clay, kaolinite. It was found that a multilayer adhesion mechanism occurs. Sorption of ionic liquids on kaolinite indicates that these chemicals can modify the clay surfaces, which may lead to changes in its natural geochemical cycles. Abstract. In the present study, the mechanism of sorption of ionic liquids onto kaolinite clay mineral has been investigated in detail. Results obtained indicate a multilayer type of adsorption. At final saturations, the highest distribution coefficients were found for the long alkyl chain molecules. The mean free energy values obtained are below values of a typical ion-exchange process, which thus suggests that the adsorption mechanism is a combination of electrostatic interaction and physical sorption. At the beginning of the binding process (formation of a monolayer), ion-exchange and van der Waals interactions are predominantly responsible for the process, whereas at higher concentrations of ionic liquids, dispersive interactions become dominant. Thermodynamic parameters were also calculated from graphical interpretation of experimental data. Negative values of ΔG indicate a spontaneous sorption process for ionic liquids. Standard heats of adsorption were found to be exothermic and entropy contributions were negative in all cases studied.


Chemosphere | 2013

Changes in zeta potential of imidazolium ionic liquids modified minerals - Implications for determining mechanism of adsorption

Wojciech Mrozik; Kurosch Rezwan; Jorg Thöming; Jan Hupka; Christian Jungnickel

As the amount of industrial processes involving ionic liquids (ILs) increase the question of their environmental fate awaits an answer. Should ILs become a source of pollution they will primarily be found in soils and water. Interaction of imidazolium IL with soils is a complex interplay of many parameters making predicting their fate and mobility a challenging task. In order to shed more light on the mechanism of adsorption in soils we examined the interactions of imidazolium ILs with the major component of soils, namely mineral fraction. Within this work adsorption on kaolinite and quartz was investigated in terms of adsorption isotherms, partition coefficients and changes of zeta potentials of clays modified by ILs aggregates. The zeta potential was found to be dependent on the alkyl chain length of the imidazolium homologues. It can therefore be concluded that although adsorption seems to rely on electrostatic attraction, at least in the initial stage, the hydrophobicity of molecules is just as significant.


Journal of Physical Chemistry B | 2011

Ionic liquids: predictions of physicochemical properties with experimental and/or DFT-calculated LFER parameters to understand molecular interactions in solution.

Chul-Woong Cho; Ulrich Preiss; Christian Jungnickel; Stefan Stolte; Jürgen Arning; Johannes Ranke; Andreas Klamt; Ingo Krossing; Jorg Thöming

In this article, we present evolutionary models to predict the octanol-water partition coefficients (log P), water solubilities, and critical micelle concentrations (CMCs) of ionic liquids (ILs), as well as the anionic activity coefficients and hydrophobicities in pure water and octanol-water. They are based on a polyparameter linear free energy relationship (LFER) using measured and/or DFT-calculated LFER parameters: hydrogen-bonding acidity (A), hydrogen-bonding basicity (B), polarizability/dipolarity (S), excess molar refraction (E), and McGowan volume (V) of IL ions. With both calculated or experimental LFER descriptors of IL ions, the physicochemical parameters were predicted with an errors of 0.182-0.217 for the octanol-water partition coefficient and 0.131-0.166 logarithmic units for the water solubility. Because experimentally determined solute parameters of anions are not currently available, the CMC, anionic activity coefficient, and hydrophobicity were predicted with quantum-chemical methods with R(2) values of at least 0.99, as well as errors below 0.168 logarithmic units. These new approaches will facilitate the assessment of the technical applicability and environmental fate of ionic compounds even before their synthesis.


Water Research | 2013

Toxicity of ionic liquid cations and anions towards activated sewage sludge organisms from different sources – Consequences for biodegradation testing and wastewater treatment plant operation

Magdalena Piszora; Nelson H. Caicedo; Christian Jungnickel; Stefan Stolte

Ionic liquids (ILs) have attracted great interest in academia and industry during the last decade. So far, several ILs have been used in technological processes, from small scale to industrial applications, which makes it more and more likely that they will be released into the environment. Researchers have been actively studying the environmental and toxicological behaviour of ILs, but their influence on the activated sludge communities of wastewater treatment plants have yet to be investigated. This study aims to fill this knowledge gap by systematically investigating the influence of ILs on activated sewage sludge communities. We tested the inhibition of activated sludge respiration (according to OECD guideline 209) by a selection of 19 different compounds covering the chemical space of ILs as comprehensively as possible. To elicit the differences in sensitivities/tolerances towards ILs we investigated activated sludge from different domestic and industrial sources. Generally speaking, the structure activity relationships of IL toxicity towards activated sludge are in good agreement with those found for other organisms and test systems. The inhibitory potential of tested ILs substituted with short alkyl chains (≤ 4) and polar anions was low. On the other hand, the toxic effects of highly hydrophobic ionic cations and anions were greater - IC50 values were low, some < 50 μM (<10 mg L(-1)). We were able to demonstrate that the EC50 values from Vibrio fischeri can be used for a reliable assessment of the sludge inhibition potential of tested ILs. All the results are discussed in the context of their consequences for biodegradation processes and the performance of wastewater treatment plants.


Sar and Qsar in Environmental Research | 2013

In silico modelling for predicting the cationic hydrophobicity and cytotoxicity of ionic liquids towards the Leukemia rat cell line, Vibrio fischeri and Scenedesmus vacuolatus based on molecular interaction potentials of ions

Chul-Woong Cho; Johannes Ranke; Jürgen Arning; Jorg Thöming; Ulrich Preiss; Christian Jungnickel; M. Diedenhofen; Ingo Krossing; Stefan Stolte

In this study we present prediction models for estimating in silico the cationic hydrophobicity and the cytotoxicity (log [1/EC50]) of ionic liquids (ILs) towards the Leukemia rat cell line (IPC-81), the marine bacterium Vibrio fischeri and the limnic green algae Scenedesmus vacuolatus using linear free energy relationship (LFER) descriptors computed by COSMO calculations. The LFER descriptors used for the prediction model (i.e. excess molar refraction (E), dipolarity/polarizability (S), hydrogen-bonding acidity (A), hydrogen-bonding basicity (B) and McGowan volume (V)) were calculated using sub-descriptors (sig2, sig3, HBD3, HBA4, MR, and volume) derived from COSMO–RS, COSMO and OBPROP. With the combination of two solute descriptors (B, V) of the cation we were able to predict cationic hydrophobicity values (log ko ) with r 2 = 0.987 and standard error (SE) = 0.139 log units. By using the calculated log k o values, we were able to deduce a linear toxicity prediction model. In the second prediction study for the cytotoxicity of ILs, analysis of descriptor sensitivity helped us to determine that the McGowan volume (V) terms of the cation was the most important predictor of cytotoxicity and to simplify prediction models for cytotoxicity of ILs towards the IPC-81 (r 2 of 0.778, SE of 0.450 log units), Vibrio fischeri (r 2 of 0.762, SE of 0.529 log units) and Scenedesmus vacuolatus (r 2 of 0.776, SE of 0.825 log units). The robustness and predictivity of the two models for IPC-81 and Vibrio fischeri were checked by comparing the calculated SE and r 2 (coefficient of determination) values of the test set.


Journal of Colloid and Interface Science | 2011

Influence of the Hofmeister anions on self-organization of 1-decyl-3-methylimidazolium chloride in aqueous solutions

Justyna Łuczak; Jorg Thöming; Jan Hupka; Christian Jungnickel

Inorganic salts usually influence water structure affecting the hydration of the molecules which lead to a salting-in or a salting-out effect of hydrophobic compounds. Specific conductivity and isothermal titration calorimetry have been used to study the effect of inorganic salts on aggregation of the cationic surfactant 1-decyl-3-methylimidazolium chloride in aqueous solutions. The effect of the concentration, the nature of the anion and temperature on micelle formation were studied. A decreasing critical micelle concentration (CMC) due to the weakening electrostatic repulsion between the headgroups was observed. The salts used in this investigation decreased the CMC and degree of micelle ionization in the order of Cl(-)<Br(-)<NO(3)(-)<I(-) which parallels the Hofmeister series of ions. The effect of the electrolyte concentration on the CMC, and a relationship between the electrolyte counter-ion concentration and the CMC were also shown.


Journal of Hazardous Materials | 2011

Influence of microbial adaption and supplementation of nutrients on the biodegradation of ionic liquids in sewage sludge treatment processes

Stefan Stolte; Zofia Lustig; Justyna Łuczak; Michał Skup; Jan Hupka; Christian Jungnickel

As ionic liquids are winning more attention from industry as a replacement of more hazardous chemicals, some of their structures have the potential to become persistent pollutants due to high stability towards abiotic and biotic degradation processes. Therefore it is important to determine the hazard associated with the presence of ILs in the environment, for example biodegradation under real conditions. Standard biodegradation testing procedures generally permit pre-conditioning of inoculum but do not allow for pre-exposition to the test substance. These are usually conducted in a mineral medium which does not provide additional organic nutrients. Though very valuable, as a point of reference, these tests do not fully represent real conditions. In in situ conditions, for example in wastewater treatment plants or natural soils and water bodies, the presence of readily available sources of energy and nutrients as well as the process of adaptation may often alter the fate and metabolic pathways of xenobiotics. Our results have shown that these are the opposing processes influencing the biodegradation rate of ILs in sewage sludge. The results have significant practical implications with respect to the assessment of biodegradability and environmental fate of ILs and other xenobiotics in environmental conditions and their potential remediation options.

Collaboration


Dive into the Christian Jungnickel's collaboration.

Top Co-Authors

Avatar

Jan Hupka

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Justyna Łuczak

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Aranowski

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge