Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Kubisch is active.

Publication


Featured researches published by Christian Kubisch.


Nature Genetics | 2006

Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase

Alfredo Ramirez; Andre Heimbach; Jan Gründemann; Barbara Stiller; Daniel J. Hampshire; L. Pablo Cid; Ingrid Goebel; Ammar Mubaidin; Abdul-Latif Wriekat; Jochen Roeper; Amir S. Najim Al-Din; Axel M. Hillmer; Meliha Karsak; Birgit Liss; C. Geoffrey Woods; Maria I. Behrens; Christian Kubisch

Neurodegenerative disorders such as Parkinson and Alzheimer disease cause motor and cognitive dysfunction and belong to a heterogeneous group of common and disabling disorders. Although the complex molecular pathophysiology of neurodegeneration is largely unknown, major advances have been achieved by elucidating the genetic defects underlying mendelian forms of these diseases. This has led to the discovery of common pathophysiological pathways such as enhanced oxidative stress, protein misfolding and aggregation and dysfunction of the ubiquitin-proteasome system. Here, we describe loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia (PARK9, Kufor-Rakeb syndrome). Whereas the wild-type protein was located in the lysosome of transiently transfected cells, the unstable truncated mutants were retained in the endoplasmic reticulum and degraded by the proteasome. Our findings link a class of proteins with unknown function and substrate specificity to the protein networks implicated in neurodegeneration and parkinsonism.


Cell | 1999

KCNQ4, a Novel Potassium Channel Expressed in Sensory Outer Hair Cells, Is Mutated in Dominant Deafness

Christian Kubisch; Björn C. Schroeder; Thomas Friedrich; Björn Lütjohann; Aziz El-Amraoui; Sandrine Marlin; Christine Petit; Thomas J. Jentsch

Potassium channels regulate electrical signaling and the ionic composition of biological fluids. Mutations in the three known genes of the KCNQ branch of the K+ channel gene family underlie inherited cardiac arrhythmias (in some cases associated with deafness) and neonatal epilepsy. We have now cloned KCNQ4, a novel member of this branch. It maps to the DFNA2 locus for a form of nonsyndromic dominant deafness. In the cochlea, it is expressed in sensory outer hair cells. A mutation in this gene in a DFNA2 pedigree changes a residue in the KCNQ4 pore region. It abolishes the potassium currents of wild-type KCNQ4 on which it exerts a strong dominant-negative effect. Whereas mutations in KCNQ1 cause deafness by affecting endolymph secretion, the mechanism leading to KCNQ4-related hearing loss is intrinsic to outer hair cells.


Nature | 1998

Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K + channels causes epilepsy

Björn C. Schroeder; Christian Kubisch; Valentin Stein; Thomas J. Jentsch

Epilepsy affects more than 0.5% of the worlds population and has a large genetic component. It is due to an electrical hyperexcitability in the central nervous system. Potassium channels are important regulators of electrical signalling, and benign familial neonatal convulsions (BFNC), an autosomal dominant epilepsy of infancy, is caused by mutations in the KCNQ2 or the KCNQ3 potassium channel genes. Here we show that KCNQ2 and KCNQ3 are distributed broadly in brain with expression patterns that largely overlap. Expression in Xenopus oocytes indicates the formation of heteromeric KCNQ2/KCNQ3 potassium channels with currents that are at least tenfold larger than those of the respective homomeric channels. KCNQ2/KCNQ3 currents can be increased by intracellular cyclic AMP, an effect that depends on an intact phosphorylation site in the KCNQ2 amino terminus. KCNQ2 and KCNQ3 mutations identified in BFNC pedigrees compromised the function of the respective subunits, but exerted no dominant-negative effect on KCNQ2/KCNQ3 heteromeric channels. We predict that a 25% loss of heteromeric KCNQ2/KCNQ3-channel function is sufficient to cause the electrical hyperexcitability in BFNC. Drugs raising intracellular cAMP may prove beneficial in this form of epilepsy.


Nature Genetics | 2001

Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

Hanno J. Bolz; Benigna von Brederlow; Alfredo Ramirez; Elizabeth C. Bryda; Kerstin Kutsche; Hans Gerd Nothwang; Mathias W. Seeliger; María Salcedo Cabrera; Manuel Caballeró Vila; Orfilio Pélaez Molina; Andreas Gal; Christian Kubisch

Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa1 (RP). So far, six loci (USH1A–USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A (ref. 2) for USH1B and the gene encoding harmonin3,4 for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10 (ref. 5). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G→C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, ΔM1281 and IVS51+5G→A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper6, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.


Journal of Biological Chemistry | 2000

KCNQ5, a Novel Potassium Channel Broadly Expressed in Brain, Mediates M-type Currents*

Björn C. Schroeder; Mirko Hechenberger; Frank Weinreich; Christian Kubisch; Thomas J. Jentsch

KCNQ2 and KCNQ3, both of which are mutated in a type of human neonatal epilepsy, form heteromeric potassium channels that are expressed in broad regions of the brain. The associated current may be identical to the M-current, an important regulator of neuronal excitability. We now show that the RNA encoding the novel KCNQ5 channel is also expressed in brain and in sympathetic ganglia where it overlaps largely with KCNQ2 and KCNQ3. In addition, it is expressed in skeletal muscle. KCNQ5 yields currents that activate slowly with depolarization and can form heteromeric channels with KCNQ3. Currents expressed from KCNQ5 have voltage dependences and inhibitor sensitivities in common with M-currents. They are also inhibited by M1 muscarinic receptor activation. A KCNQ5 splice variant found in skeletal muscle displays altered gating kinetics. This indicates a molecular diversity of channels yielding M-type currents and suggests a role for KCNQ5 in the regulation of neuronal excitability.


Nature Genetics | 2003

Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies.

Karsten Haug; Maike Warnstedt; Alexi K. Alekov; Thomas Sander; Alfredo Ramirez; Barbara Poser; Snezana Maljevic; Simon Hebeisen; Christian Kubisch; Johannes Rebstock; Steve Horvath; Kerstin Hallmann; Joern S. Dullinger; Birgit Rau; Fritz Haverkamp; Stefan Beyenburg; Herbert Schulz; Dieter Janz; Bernd Giese; Gerhard Müller-Newen; Peter Propping; Christian E. Elger; Christoph Fahlke; Holger Lerche; Armin Heils

Idiopathic generalized epilepsy (IGE) is an inherited neurological disorder affecting about 0.4% of the worlds population. Mutations in ten genes causing distinct forms of idiopathic epilepsy have been identified so far1,2,3,4,5,6,7, but the genetic basis of many IGE subtypes is still unknown. Here we report a gene associated with the four most common IGE subtypes: childhood and juvenile absence epilepsy (CAE and JAE), juvenile myoclonic epilepsy (JME), and epilepsy with grand mal seizures on awakening (EGMA; ref. 8). We identified three different heterozygous mutations in the chloride-channel gene CLCN2 in three unrelated families with IGE. These mutations result in (i) a premature stop codon (M200fsX231), (ii) an atypical splicing (del74–117) and (iii) a single amino-acid substitution (G715E). All mutations produce functional alterations that provide distinct explanations for their pathogenic phenotypes. M200fsX231 and del74–117 cause a loss of function of ClC-2 channels and are expected to lower the transmembrane chloride gradient essential for GABAergic inhibition. G715E alters voltage-dependent gating, which may cause membrane depolarization and hyperexcitability.


Nature Genetics | 2010

Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1

Verneri Anttila; Hreinn Stefansson; Mikko Kallela; Unda Todt; Gisela M. Terwindt; M. S. Calafato; Dale R. Nyholt; Antigone S. Dimas; Tobias Freilinger; Bertram Müller-Myhsok; Ville Artto; Michael Inouye; Kirsi Alakurtti; Mari A. Kaunisto; Eija Hämäläinen; B.B.A. de Vries; Anine H. Stam; Claudia M. Weller; A. Heinze; K. Heinze-Kuhn; Ingrid Goebel; Guntram Borck; Hartmut Göbel; Stacy Steinberg; Christiane Wolf; Asgeir Björnsson; Gudmundur Gudmundsson; M. Kirchmann; A. Hauge; Thomas Werge

Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or molecular markers for migraine have been convincingly established. We identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with migraine (P = 5.38 × 10−9, odds ratio = 1.23, 95% CI 1.150–1.324) in a genome-wide association study of 2,731 migraine cases ascertained from three European headache clinics and 10,747 population-matched controls. The association was replicated in 3,202 cases and 40,062 controls for an overall meta-analysis P value of 1.69 × 10−11 (odds ratio = 1.18, 95% CI 1.127–1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 × 10−5, permuted threshold for genome-wide significance 7.7 × 10−5). To our knowledge, our data establish rs1835740 as the first genetic risk factor for migraine.


Nature Genetics | 2011

Genome-wide association study reveals three susceptibility loci for common migraine in the general population

Daniel I. Chasman; Markus Schürks; Verneri Anttila; Boukje de Vries; Ulf Schminke; Lenore J. Launer; Gisela M. Terwindt; Arn M. J. M. van den Maagdenberg; Konstanze Fendrich; Henry Völzke; Florian Ernst; Lyn R. Griffiths; Julie E. Buring; Mikko Kallela; Tobias Freilinger; Christian Kubisch; Paul M. Ridker; Aarno Palotie; Michel D. Ferrari; Wolfgang Hoffmann; Robert Y.L. Zee; Tobias Kurth

Migraine is a common, heterogeneous and heritable neurological disorder. Its pathophysiology is incompletely understood, and its genetic influences at the population level are unknown. In a population-based genome-wide analysis including 5,122 migraineurs and 18,108 non-migraineurs, rs2651899 (1p36.32, PRDM16), rs10166942 (2q37.1, TRPM8) and rs11172113 (12q13.3, LRP1) were among the top seven associations (P < 5 × 10−6) with migraine. These SNPs were significant in a meta-analysis among three replication cohorts and met genome-wide significance in a meta-analysis combining the discovery and replication cohorts (rs2651899, odds ratio (OR) = 1.11, P = 3.8 × 10−9; rs10166942, OR = 0.85, P = 5.5 × 10−12; and rs11172113, OR = 0.90, P = 4.3 × 10−9). The associations at rs2651899 and rs10166942 were specific for migraine compared with non-migraine headache. None of the three SNP associations was preferential for migraine with aura or without aura, nor were any associations specific for migraine features. TRPM8 has been the focus of neuropathic pain models, whereas LRP1 modulates neuronal glutamate signaling, plausibly linking both genes to migraine pathophysiology.


Nature Genetics | 2013

Genome-wide meta-analysis identifies new susceptibility loci for migraine

Verneri Anttila; Bendik S. Winsvold; Padhraig Gormley; Tobias Kurth; Francesco Bettella; George McMahon; Mikko Kallela; Rainer Malik; Boukje de Vries; Gisela M. Terwindt; Sarah E. Medland; Unda Todt; Wendy L. McArdle; Lydia Quaye; Markku Koiranen; M. Arfan Ikram; Terho Lehtimäki; Anine H. Stam; Lannie Ligthart; Juho Wedenoja; Ian Dunham; Benjamin M. Neale; Priit Palta; Eija Hämäläinen; Markus Schuerks; Lynda M. Rose; Julie E. Buring; Paul M. Ridker; Stacy Steinberg; Hreinn Stefansson

Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P < 5 × 10−8). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.


Nature Genetics | 2012

Genome-wide association analysis identifies susceptibility loci for migraine without aura

Tobias Freilinger; Verneri Anttila; Boukje de Vries; Rainer Malik; Mikko Kallela; Gisela M. Terwindt; Patricia Pozo-Rosich; Bendik S. Winsvold; Dale R. Nyholt; Willebrordus P.J. van Oosterhout; Ville Artto; Unda Todt; Eija Hämäläinen; Jèssica Fernández-Morales; Mark A. Louter; Mari A. Kaunisto; Jean Schoenen; Olli T. Raitakari; Terho Lehtimäki; Marta Vila-Pueyo; Hartmut Göbel; Erich Wichmann; Cèlia Sintas; André G. Uitterlinden; Albert Hofman; Fernando Rivadeneira; A. Heinze; Erling Tronvik; Cornelia M. van Duijn; Jaakko Kaprio

Migraine without aura is the most common form of migraine, characterized by recurrent disabling headache and associated autonomic symptoms. To identify common genetic variants associated with this migraine type, we analyzed genome-wide association data of 2,326 clinic-based German and Dutch individuals with migraine without aura and 4,580 population-matched controls. We selected SNPs from 12 loci with 2 or more SNPs associated with P values of <1 × 10−5 for replication testing in 2,508 individuals with migraine without aura and 2,652 controls. SNPs at two of these loci showed convincing replication: at 1q22 (in MEF2D; replication P = 4.9 × 10−4; combined P = 7.06 × 10−11) and at 3p24 (near TGFBR2; replication P = 1.0 × 10−4; combined P = 1.17 × 10−9). In addition, SNPs at the PHACTR1 and ASTN2 loci showed suggestive evidence of replication (P = 0.01; combined P = 3.20 × 10−8 and P = 0.02; combined P = 3.86 × 10−8, respectively). We also replicated associations at two previously reported migraine loci in or near TRPM8 and LRP1. This study identifies the first susceptibility loci for migraine without aura, thereby expanding our knowledge of this debilitating neurological disorder.

Collaboration


Dive into the Christian Kubisch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Volk

University of Hamburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Wollnik

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gisela M. Terwindt

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge