Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guntram Borck is active.

Publication


Featured researches published by Guntram Borck.


Nature Genetics | 2010

Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1

Verneri Anttila; Hreinn Stefansson; Mikko Kallela; Unda Todt; Gisela M. Terwindt; M. S. Calafato; Dale R. Nyholt; Antigone S. Dimas; Tobias Freilinger; Bertram Müller-Myhsok; Ville Artto; Michael Inouye; Kirsi Alakurtti; Mari A. Kaunisto; Eija Hämäläinen; B.B.A. de Vries; Anine H. Stam; Claudia M. Weller; A. Heinze; K. Heinze-Kuhn; Ingrid Goebel; Guntram Borck; Hartmut Göbel; Stacy Steinberg; Christiane Wolf; Asgeir Björnsson; Gudmundur Gudmundsson; M. Kirchmann; A. Hauge; Thomas Werge

Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or molecular markers for migraine have been convincingly established. We identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with migraine (P = 5.38 × 10−9, odds ratio = 1.23, 95% CI 1.150–1.324) in a genome-wide association study of 2,731 migraine cases ascertained from three European headache clinics and 10,747 population-matched controls. The association was replicated in 3,202 cases and 40,062 controls for an overall meta-analysis P value of 1.69 × 10−11 (odds ratio = 1.18, 95% CI 1.127–1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 × 10−5, permuted threshold for genome-wide significance 7.7 × 10−5). To our knowledge, our data establish rs1835740 as the first genetic risk factor for migraine.


Nature Genetics | 2013

Genome-wide meta-analysis identifies new susceptibility loci for migraine

Verneri Anttila; Bendik S. Winsvold; Padhraig Gormley; Tobias Kurth; Francesco Bettella; George McMahon; Mikko Kallela; Rainer Malik; Boukje de Vries; Gisela M. Terwindt; Sarah E. Medland; Unda Todt; Wendy L. McArdle; Lydia Quaye; Markku Koiranen; M. Arfan Ikram; Terho Lehtimäki; Anine H. Stam; Lannie Ligthart; Juho Wedenoja; Ian Dunham; Benjamin M. Neale; Priit Palta; Eija Hämäläinen; Markus Schuerks; Lynda M. Rose; Julie E. Buring; Paul M. Ridker; Stacy Steinberg; Hreinn Stefansson

Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P < 5 × 10−8). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.


American Journal of Human Genetics | 2011

Adaptor Protein Complex 4 Deficiency Causes Severe Autosomal-Recessive Intellectual Disability, Progressive Spastic Paraplegia, Shy Character, and Short Stature

Rami Abou Jamra; Orianne Philippe; Annick Raas-Rothschild; Sebastian H. Eck; Elisabeth Graf; Rebecca Buchert; Guntram Borck; Arif B. Ekici; Felix F. Brockschmidt; Markus M. Nöthen; Arnold Munnich; Tim M. Strom; André Reis; Laurence Colleaux

Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex.


American Journal of Human Genetics | 2011

Loss-of-function mutations of ILDR1 cause autosomal-recessive hearing impairment DFNB42.

Guntram Borck; Atteeq U. Rehman; Kwanghyuk Lee; Hans Martin Pogoda; Naseebullah Kakar; Simon von Ameln; Nicolas Grillet; Michael S. Hildebrand; Zubair M. Ahmed; Gudrun Nürnberg; Muhammad Ansar; Sulman Basit; Qamar Javed; Robert J. Morell; Nabilah Nasreen; A. Eliot Shearer; Adeel Ahmad; Kimia Kahrizi; Rehan Sadiq Shaikh; Shaheen N. Khan; Ingrid Goebel; Nicole C. Meyer; William J. Kimberling; Jennifer A. Webster; Dietrich A. Stephan; Martin R. Schiller; Melanie Bahlo; Hossein Najmabadi; Peter G. Gillespie; Peter Nürnberg

By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.


Journal of Medical Genetics | 2004

NIPBL mutations and genetic heterogeneity in Cornelia de Lange syndrome

Guntram Borck; Richard Redon; Damien Sanlaville; Marlène Rio; M Prieur; Stanislas Lyonnet; Michel Vekemans; Nigel P. Carter; Arnold Munnich; Laurence Colleaux; Valérie Cormier-Daire

Cornelia de Lange syndrome (CdLS, also called Brachmann de Lange syndrome; OMIM 122470) is characterised by pre- and postnatal growth retardation, microcephaly, severe mental retardation with speech delay, feeding problems, major malformations including limb defects, and characteristic facial features.1 Facial dysmorphism includes arched eyebrows, synophrys, short nose with anteverted nares, long philtrum, thin upper lip, and micrognathia. Although few autosomal dominant forms of CdLS have been described,2,3 the large majority of cases are sporadic, and the scarcity of these familial forms has hampered the identification of the gene(s) underlying CdLS.4 Finally, rare cases of CdLS have been associated with balanced chromosomal translocations.5–7 A gene responsible for CdLS has been recently identified by two groups. Indeed, Krantz et al performed genome-wide linkage exclusion mapping in 12 CdLS families and identified a locus on chromosome 5p13.8 This locus mapped close to both a translocation breakpoint and a small de novo deletion associated with CdLS. Studying the 5p13 translocation breakpoint allowed both groups to identify a disrupted gene which they called NIPBL , for Nipped-B like.8,9 NIPBL is the human homolog of the Drosophila Nipped-B gene, the product of which belongs to the family of chromosomal adherins. The Drosophila Nipped-B protein is involved in chromatid cohesion processes and enhancer-promoter communication.10,11 The exact function of the human NIPBL gene product, called delangin, is unknown, but its wide expression pattern, including expression in embryonic limb bud, branchial arch, and craniofacial mesenchyme, is consistent with many of the anomalies observed in CdLS. NIPBL mutations have been identified in 20–50% of CdLS cases,8,9,12 suggesting that some mutations may have escaped detection and/or that CdLS is genetically heterogeneous. To address this question, we performed a comprehensive clinical, cytogenetic, and molecular study in 14 affected …


Human Mutation | 2013

Mutation Spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and Genotype–Phenotype Correlations in Warburg Micro Syndrome and Martsolf Syndrome

Mark T. Handley; Deborah J. Morris-Rosendahl; Stephen Brown; Fiona Macdonald; Carol Hardy; Danai Bem; Sarah M. Carpanini; Guntram Borck; Loreto Martorell; Claudia Izzi; Francesca Faravelli; Patrizia Accorsi; Lorenzo Pinelli; Lina Basel-Vanagaite; Gabriela Peretz; Ghada M.H. Abdel-Salam; Maha S. Zaki; Anna Jansen; David Mowat; Ian A. Glass; Helen Stewart; Grazia M.S. Mancini; Damien Lederer; Tony Roscioli; Fabienne Giuliano; Astrid S. Plomp; Arndt Rolfs; John M. Graham; Eva Seemanova; Pilar Poo

Warburg Micro syndrome and Martsolf syndrome (MS) are heterogeneous autosomal‐recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Causative biallelic germline mutations have been identified in RAB3GAP1, RAB3GAP2, or RAB18, each of which encode proteins involved in membrane trafficking. This report provides an up to date overview of all known disease variants identified in 29 previously published families and 52 new families. One‐hundred and forty‐four Micro and nine Martsolf families were investigated, identifying mutations in RAB3GAP1 in 41% of cases, mutations in RAB3GAP2 in 7% of cases, and mutations in RAB18 in 5% of cases. These are listed in Leiden Open source Variation Databases, which was created by us for all three genes. Genotype–phenotype correlations for these genes have now established that the clinical phenotypes in Micro syndrome and MS represent a phenotypic continuum related to the nature and severity of the mutations present in the disease genes, with more deleterious mutations causing Micro syndrome and milder mutations causing MS. RAB18 has not yet been linked to the RAB3 pathways, but mutations in all three genes cause an indistinguishable phenotype, making it likely that there is some overlap. There is considerable genetic heterogeneity for these disorders and further gene identification will help delineate these pathways.


Brain | 2014

Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood.

Joanne Ng; Juan Zhen; Esther Meyer; Kevin Erreger; Yan Li; Naseebullah Kakar; Jamil Ahmad; Holger Thiele; Christian Kubisch; Nicholas L. Rider; D. Holmes Morton; Kevin A. Strauss; Erik G. Puffenberger; Daniela D’Agnano; Yair Anikster; Claudia Carducci; Keith Hyland; Michael Rotstein; Vincenzo Leuzzi; Guntram Borck; Maarten E. A. Reith; Manju A. Kurian

Dopamine transporter deficiency syndrome is an SLC6A3-related progressive infantile-onset parkinsonism-dystonia that mimics cerebral palsy. Ng et al. describe clinical features and molecular findings in a new cohort of patients. They report infants with classical disease, as well as young adults manifesting as atypical juvenile-onset parkinsonism-dystonia, thereby expanding the disease spectrum.


Genome Research | 2015

BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

Guntram Borck; Friederike Hög; Maria Lisa Dentici; Perciliz L. Tan; Nadine Sowada; Ana Medeira; Lucie Gueneau; Holger Thiele; Maria Kousi; Francesca Lepri; Larissa Wenzeck; Ian Blumenthal; Antonio Radicioni; Tito Livio Schwarzenberg; Barbara Mandriani; Rita Fischetto; Deborah J. Morris-Rosendahl; Janine Altmüller; Alexandre Reymond; Peter Nürnberg; Giuseppe Merla; Bruno Dallapiccola; Nicholas Katsanis; Patrick Cramer; Christian Kubisch

RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.


American Journal of Human Genetics | 2012

Deficiency for the Ubiquitin Ligase UBE3B in a Blepharophimosis-Ptosis-Intellectual-Disability Syndrome

Lina Basel-Vanagaite; Bruno Dallapiccola; Ramiro Ramirez-Solis; Alexandra Segref; Holger Thiele; Andrew Edwards; Mark J. Arends; Xavier Miró; Jacqueline K. White; Julie Désir; Marc Abramowicz; Maria Lisa Dentici; Francesca Lepri; Kay Hofmann; Adi Har-Zahav; Edward Ryder; Natasha A. Karp; Jeanne Estabel; Anna Karin B Gerdin; Christine Podrini; Neil Ingham; Janine Altmüller; Gudrun Nürnberg; Peter Frommolt; Sonia Abdelhak; Metsada Pasmanik-Chor; Osnat Konen; Richard I. Kelley; Mordechai Shohat; Peter Nürnberg

Ubiquitination plays a crucial role in neurodevelopment as exemplified by Angelman syndrome, which is caused by genetic alterations of the ubiquitin ligase-encoding UBE3A gene. Although the function of UBE3A has been widely studied, little is known about its paralog UBE3B. By using exome and capillary sequencing, we here identify biallelic UBE3B mutations in four patients from three unrelated families presenting an autosomal-recessive blepharophimosis-ptosis-intellectual-disability syndrome characterized by developmental delay, growth retardation with a small head circumference, facial dysmorphisms, and low cholesterol levels. UBE3B encodes an uncharacterized E3 ubiquitin ligase. The identified UBE3B variants include one frameshift and two splice-site mutations as well as a missense substitution affecting the highly conserved HECT domain. Disruption of mouse Ube3b leads to reduced viability and recapitulates key aspects of the human disorder, such as reduced weight and brain size and a downregulation of cholesterol synthesis. We establish that the probable Caenorhabditis elegans ortholog of UBE3B, oxi-1, functions in the ubiquitin/proteasome system in vivo and is especially required under oxidative stress conditions. Our data reveal the pleiotropic effects of UBE3B deficiency and reinforce the physiological importance of ubiquitination in neuronal development and function in mammals.


Human Genetics | 2011

A homozygous RAB3GAP2 mutation causes Warburg Micro syndrome

Guntram Borck; Heidrun Wunram; Angela Steiert; Alexander E. Volk; Friederike Körber; Sigrid Roters; Peter Herkenrath; Bernd Wollnik; Deborah J. Morris-Rosendahl; Christian Kubisch

Warburg Micro syndrome and Martsolf syndrome are clinically overlapping autosomal recessive conditions characterized by congenital cataracts, microphthalmia, postnatal microcephaly, and developmental delay. The neurodevelopmental and ophthalmological phenotype is more severe in Warburg Micro syndrome in which cerebral malformations and severe motor and mental retardation are common. While biallelic loss-of-function mutations in RAB3GAP1 are present in the majority of patients with Warburg Micro syndrome; a hypomorphic homozygous splicing mutation of RAB3GAP2 has been reported in a single family with Martsolf syndrome. Here, we report a novel homozygous RAB3GAP2 small in-frame deletion, c.499_507delTTCTACACT (p.Phe167_Thr169del) that causes Warburg Micro syndrome in a girl from a consanguineous Turkish family presenting with congenital cataracts, microphthalmia, absent visually evoked potentials, microcephaly, polymicrogyria, hypoplasia of the corpus callosum, and severe developmental delay. No RAB3GAP2 mutations were detected in ten additional unrelated patients with RAB3GAP1-negative Warburg Micro syndrome, consistent with further genetic heterogeneity. In conclusion, we provide evidence that RAB3GAP2 mutations are not specific to Martsolf syndrome. Rather, our findings suggest that loss-of-function mutations of RAB3GAP1 as well as functionally severe RAB3GAP2 mutations cause Warburg Micro syndrome while hypomorphic RAB3GAP2 mutations can result in the milder Martsolf phenotype. Thus, a phenotypic severity gradient may exist in the RAB3GAP-associated disease continuum (the “Warburg–Martsolf syndrome”) which is presumably determined by the mutant gene and the nature of the mutation.

Collaboration


Dive into the Guntram Borck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurence Colleaux

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnold Munnich

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge