Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph H. Westphal is active.

Publication


Featured researches published by Christoph H. Westphal.


Nature | 2007

Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

Jill Milne; Philip D. Lambert; Simon Schenk; David Carney; Jesse J. Smith; David J. Gagne; Lei Jin; Olivier Boss; Robert B. Perni; Chi B. Vu; Jean E. Bemis; Roger Xie; Jeremy S. Disch; Pui Yee Ng; Joseph J. Nunes; Amy V. Lynch; Hongying Yang; Heidi Galonek; Kristine Israelian; Wendy Choy; Andre Iffland; Siva Lavu; Oliver Medvedik; David A. Sinclair; Jerrold M. Olefsky; Michael R. Jirousek; Peter J. Elliott; Christoph H. Westphal

Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme–peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.


Nature | 2011

Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase

Virginia Guarani; Gianluca Deflorian; Claudio A. Franco; Marcus Krüger; Li Kun Phng; Katie Bentley; Louise Toussaint; Franck Dequiedt; Raul Mostoslavsky; Mirko H. H. Schmidt; Barbara Zimmermann; Ralf P. Brandes; Marina Mione; Christoph H. Westphal; Thomas Braun; Andreas M. Zeiher; Holger Gerhardt; Stefanie Dimmeler; Michael Potente

Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD+-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.


American Journal of Physiology-endocrinology and Metabolism | 2010

SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity.

Takeshi Yoshizaki; Simon Schenk; Takeshi Imamura; Jennie L. Babendure; Noriyuki Sonoda; Eun Ju Bae; Da Young Oh; Min Lu; Jill Milne; Christoph H. Westphal; Gautam Bandyopadhyay; Jerrold M. Olefsky

Chronic inflammation is an important etiology underlying obesity-related disorders such as insulin resistance and type 2 diabetes, and recent findings indicate that the macrophage can be the initiating cell type responsible for this chronic inflammatory state. The mammalian silent information regulator 2 homolog SIRT1 modulates several physiological processes important for life span, and a potential role of SIRT1 in the regulation of insulin sensitivity has been shown. However, with respect to inflammation, the role of SIRT1 in regulating the proinflammatory pathway within macrophages is poorly understood. Here, we show that knockdown of SIRT1 in the mouse macrophage RAW264.7 cell line and in intraperitoneal macrophages broadly activates the JNK and IKK inflammatory pathways and increases LPS-stimulated TNFalpha secretion. Moreover, gene expression profiles reveal that SIRT1 knockdown leads to an increase in inflammatory gene expression. We also demonstrate that SIRT1 activators inhibit LPS-stimulated inflammatory pathways, as well as secretion of TNFalpha, in a SIRT1-dependent manner in RAW264.7 cells and in primary intraperitoneal macrophages. Treatment of Zucker fatty rats with a SIRT1 activator leads to greatly improved glucose tolerance, reduced hyperinsulinemia, and enhanced systemic insulin sensitivity during glucose clamp studies. These in vivo insulin-sensitizing effects were accompanied by a reduction in tissue inflammation markers and a decrease in the adipose tissue macrophage proinflammatory state, fully consistent with the in vitro effects of SIRT1 in macrophages. In conclusion, these results define a novel role for SIRT1 as an important regulator of macrophage inflammatory responses in the context of insulin resistance and raise the possibility that targeting of SIRT1 might be a useful strategy for treating the inflammatory component of metabolic diseases.


Genes & Development | 2010

Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP

Amy K. Walker; Fajun Yang; Karen Jiang; Jun-Yuan Ji; Jennifer L. Watts; Aparna Purushotham; Olivier Boss; Michael L. Hirsch; Scott Ribich; Jesse J. Smith; Kristine Israelian; Christoph H. Westphal; Joseph T. Rodgers; Toshi Shioda; Sarah L. Elson; Peter Mulligan; Hani Najafi-Shoushtari; Josh C. Black; Jitendra K. Thakur; Lisa C. Kadyk; Johnathan R. Whetstine; Raul Mostoslavsky; Pere Puigserver; Xiaoling Li; Nicholas J. Dyson; Anne C. Hart; Anders M. Näär

The sterol regulatory element-binding protein (SREBP) transcription factor family is a critical regulator of lipid and sterol homeostasis in eukaryotes. In mammals, SREBPs are highly active in the fed state to promote the expression of lipogenic and cholesterogenic genes and facilitate fat storage. During fasting, SREBP-dependent lipid/cholesterol synthesis is rapidly diminished in the mouse liver; however, the mechanism has remained incompletely understood. Moreover, the evolutionary conservation of fasting regulation of SREBP-dependent programs of gene expression and control of lipid homeostasis has been unclear. We demonstrate here a conserved role for orthologs of the NAD(+)-dependent deacetylase SIRT1 in metazoans in down-regulation of SREBP orthologs during fasting, resulting in inhibition of lipid synthesis and fat storage. Our data reveal that SIRT1 can directly deacetylate SREBP, and modulation of SIRT1 activity results in changes in SREBP ubiquitination, protein stability, and target gene expression. In addition, chemical activators of SIRT1 inhibit SREBP target gene expression in vitro and in vivo, correlating with decreased hepatic lipid and cholesterol levels and attenuated liver steatosis in diet-induced and genetically obese mice. We conclude that SIRT1 orthologs play a critical role in controlling SREBP-dependent gene regulation governing lipid/cholesterol homeostasis in metazoans in response to fasting cues. These findings may have important biomedical implications for the treatment of metabolic disorders associated with aberrant lipid/cholesterol homeostasis, including metabolic syndrome and atherosclerosis.


Scientific Reports | 2011

SRT1720 improves survival and healthspan of obese mice

Robin K. Minor; Joseph A. Baur; Ana P. Gomes; Theresa M. Ward; Anna Csiszar; Evi M. Mercken; Kotb Abdelmohsen; Yu Kyong Shin; Carles Cantó; Morten Scheibye-Knudsen; Melissa Krawczyk; Pablo M. Irusta; Alejandro Martin-Montalvo; Basil P. Hubbard; Yongqing Zhang; Elin Lehrmann; Alexa A. White; Nathan L. Price; William R. Swindell; Kevin J. Pearson; Kevin G. Becker; Vilhelm A. Bohr; Myriam Gorospe; Josephine M. Egan; Mark I. Talan; Johan Auwerx; Christoph H. Westphal; James L. Ellis; Zoltan Ungvari; George P. Vlasuk

Sirt1 is an NAD+-dependent deacetylase that extends lifespan in lower organisms and improves metabolism and delays the onset of age-related diseases in mammals. Here we show that SRT1720, a synthetic compound that was identified for its ability to activate Sirt1 in vitro, extends both mean and maximum lifespan of adult mice fed a high-fat diet. This lifespan extension is accompanied by health benefits including reduced liver steatosis, increased insulin sensitivity, enhanced locomotor activity and normalization of gene expression profiles and markers of inflammation and apoptosis, all in the absence of any observable toxicity. Using a conditional SIRT1 knockout mouse and specific gene knockdowns we show SRT1720 affects mitochondrial respiration in a Sirt1- and PGC-1α-dependent manner. These findings indicate that SRT1720 has long-term benefits and demonstrate for the first time the feasibility of designing novel molecules that are safe and effective in promoting longevity and preventing multiple age-related diseases in mammals.


Journal of Biological Chemistry | 2009

Crystal Structures of Human SIRT3 Displaying Substrate-induced Conformational Changes

Lei Jin; Wentao Wei; Yaobin Jiang; Hao Peng; Jianhua Cai; Chen Mao; Han Dai; Wendy Choy; Jean E. Bemis; Michael R. Jirousek; Jill Milne; Christoph H. Westphal; Robert B. Perni

SIRT3 is a major mitochondrial NAD+-dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We report the first sets of crystal structures of human SIRT3, an apo-structure with no substrate, a structure with a peptide containing acetyl lysine of its natural substrate acetyl-CoA synthetase 2, a reaction intermediate structure trapped by a thioacetyl peptide, and a structure with the dethioacetylated peptide bound. These structures provide insights into the conformational changes induced by the two substrates required for the reaction, the acetylated substrate peptide and NAD+. In addition, the binding study by isothermal titration calorimetry suggests that the acetylated peptide is the first substrate to bind to SIRT3, before NAD+. These structures and biophysical studies provide key insight into the structural and functional relationship of the SIRT3 deacetylation activity.


Aging Cell | 2014

SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass

Evi M. Mercken; Sarah J. Mitchell; Alejandro Martin-Montalvo; Robin K. Minor; Maria Almeida; Ana P. Gomes; Morten Scheibye-Knudsen; Hector H. Palacios; Jordan J Licata; Yongqing Zhang; Kevin G. Becker; Husam Khraiwesh; José A. González-Reyes; José M. Villalba; Joseph A. Baur; Peter J. Elliott; Christoph H. Westphal; George P. Vlasuk; James L. Ellis; David A. Sinclair; Michel Bernier; Rafael de Cabo

Increased expression of SIRT1 extends the lifespan of lower organisms and delays the onset of age‐related diseases in mammals. Here, we show that SRT2104, a synthetic small molecule activator of SIRT1, extends both mean and maximal lifespan of mice fed a standard diet. This is accompanied by improvements in health, including enhanced motor coordination, performance, bone mineral density, and insulin sensitivity associated with higher mitochondrial content and decreased inflammation. Short‐term SRT2104 treatment preserves bone and muscle mass in an experimental model of atrophy. These results demonstrate it is possible to design a small molecule that can slow aging and delay multiple age‐related diseases in mammals, supporting the therapeutic potential of SIRT1 activators in humans.


Diabetes | 2010

SIRT1 mRNA Expression May Be Associated With Energy Expenditure and Insulin Sensitivity

Jarno Rutanen; Nagendra Yaluri; Shalem Modi; Jussi Pihlajamäki; Markku Vänttinen; Paula Itkonen; Sakari Kainulainen; Hiroyasu Yamamoto; Marie Lagouge; David A. Sinclair; Peter J. Elliott; Christoph H. Westphal; Johan Auwerx; Markku Laakso

OBJECTIVE Sirtuin 1 (SIRT1) is implicated in the regulation of mitochondrial function, energy metabolism, and insulin sensitivity in rodents. No studies are available in humans to demonstrate that SIRT1 expression in insulin-sensitive tissues is associated with energy expenditure and insulin sensitivity. RESEARCH DESIGN AND METHODS Energy expenditure (EE), insulin sensitivity, and SIRT1 mRNA adipose tissue expression (n = 81) were measured by indirect calorimetry, hyperinsulinemic-euglycemic clamp, and quantitative RT-PCR in 247 nondiabetic offspring of type 2 diabetic patients. RESULTS High EE during the clamp (r = 0.375, P = 2.8 × 10−9) and high ΔEE (EE during the clamp − EE in the fasting state) (r = 0.602, P = 2.5 × 10−24) were associated with high insulin sensitivity. Adipose tissue SIRT1 mRNA expression was significantly associated with EE (r = 0.289, P = 0.010) and with insulin sensitivity (r = 0.334, P = 0.002) during hyperinsulinemic-euglycemic clamp. Furthermore, SIRT1 mRNA expression correlated significantly with the expression of several genes regulating mitochondrial function and energy metabolism (e.g., peroxisome proliferator–activated receptor γ coactivator-1β, estrogen-related receptor α, nuclear respiratory factor-1, and mitochondrial transcription factor A), and with several genes of the respiratory chain (e.g., including NADH dehydrogenase [ubiquinone] 1α subcomplex 2, cytochrome c, cytochrome c oxidase subunit IV, and ATP synthase). CONCLUSIONS Impaired stimulation of EE by insulin and low SIRT1 expression in insulin-sensitive tissues is likely to reflect impaired regulation of mitochondrial function associated with insulin resistance in humans.


Protein Science | 2009

Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3.

Lei Jin; Heidi Galonek; Kristine Israelian; Wendy Choy; Michael Morrison; Yu Xia; Xiaohong Wang; Yihua Xu; Yuecheng Yang; Jesse J. Smith; Ethan Hoffmann; David Carney; Robert B. Perni; Michael R. Jirousek; Jean E. Bemis; Jill Milne; David A. Sinclair; Christoph H. Westphal

SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.


Cell Metabolism | 2013

Identification of a SIRT1 mutation in a family with type 1 diabetes

Anna Biason-Lauber; Marianne Böni-Schnetzler; Basil P. Hubbard; Karim Bouzakri; Andrea Brunner; Claudia Cavelti-Weder; Cornelia Keller; Monika Meyer-Böni; Daniel Meier; Caroline Brorsson; Katharina Timper; Gil Leibowitz; Andrea Patrignani; Rémy Bruggmann; Gino Boily; Henryk Zulewski; Andreas Geier; Jennifer Cermak; Peter J. Elliott; James L. Ellis; Christoph H. Westphal; Urs Knobel; Jyrki J. Eloranta; Julie Kerr-Conte; François Pattou; Daniel Konrad; Christian M. Matter; Adriano Fontana; Gerhard Rogler; Ralph Schlapbach

Type 1 diabetes is caused by autoimmune-mediated β cell destruction leading to insulin deficiency. The histone deacetylase SIRT1 plays an essential role in modulating several age-related diseases. Here we describe a family carrying a mutation in the SIRT1 gene, in which all five affected members developed an autoimmune disorder: four developed type 1 diabetes, and one developed ulcerative colitis. Initially, a 26-year-old man was diagnosed with the typical features of type 1 diabetes, including lean body mass, autoantibodies, T cell reactivity to β cell antigens, and a rapid dependence on insulin. Direct and exome sequencing identified the presence of a T-to-C exchange in exon 1 of SIRT1, corresponding to a leucine-to-proline mutation at residue 107. Expression of SIRT1-L107P in insulin-producing cells resulted in overproduction of nitric oxide, cytokines, and chemokines. These observations identify a role for SIRT1 in human autoimmunity and unveil a monogenic form of type 1 diabetes.

Collaboration


Dive into the Christoph H. Westphal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Auwerx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge