Christian Marsching
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Marsching.
Analytical and Bioanalytical Chemistry | 2011
Christian Marsching; Matthias Eckhardt; Hermann Josef Gröne; Roger Sandhoff; Carsten Hopf
AbstractSulfatides, a class of acidic glycosphingolipids, are highly expressed in mammalian myelin and in kidney, where they are thought to stabilize neuronal structures and signaling and to influence osmotic stability of renal cells, respectively. Recently, 9-aminoacridine (9-AA) has been introduced as a negative ion matrix that displays high selectivity for low complexity galactosylceramid-I3-sulfate sulfatides and that is suitable for quantitative analysis by matrix-assisted desorption/ionization (MALDI) mass spectrometry (MS). Analyzing acidic fractions of lipid extracts and cryosections from kidneys of wild type and arylsulfatase A-deficient (ASA −/−) mice, we demonstrate that 9-AA also enables sensitive on-target analysis as well as imaging of complex lactosylceramide-II3-sulfate and gangliotetraosylceramide-II3, IV3 bis-sulfate sulfatides by MALDI-TOF/TOF MS. Utilizing the MALDI imaging MS technique, we show differential localization in mouse kidney of (1) sulfatides with identical ceramide anchors, but different glycan-sulfate head groups but also of (2) sulfatides with identical head groups but with different acyl- or sphingoid base moieties. A comparison of MALDI images of renal sulfatides from control and sulfatide storing arylsulfatase A-deficient (ASA −/−) mice revealed relative expression differences, very likely reflecting differences in sulfatide turnover of the various renal cell types. These results establish MALDI imaging MS with 9-AA matrix as a label-free method for spatially resolved ex vivo investigation of the relative turnover of sulfatides in animal models of human glycosphingolipid storage disease. Figure(left) MALDI IMS using 9-Amino acridine (9-AA) matrix reveals differential localization of kidney sulfatides containing different glycan headgroups. (right) Furthermore, in mice lacking aryl sulfatase A (ASA -/-) differential distribution of sulfatides with variations in their sphingoid base are observed
Proceedings of the National Academy of Sciences of the United States of America | 2013
Paula Stettner; Soline Bourgeois; Christian Marsching; Milena Traykova-Brauch; Stefan Porubsky; Viola Nordström; Carsten Hopf; Robert Koesters; Roger Sandhoff; Herbert Wiegandt; Carsten A. Wagner; Hermann Josef Gröne; Richard Jennemann
Urinary ammonium excretion by the kidney is essential for renal excretion of sufficient amounts of protons and to maintain stable blood pH. Ammonium secretion by the collecting duct epithelia accounts for the majority of urinary ammonium; it is driven by an interstitium-to-lumen NH3 gradient due to the accumulation of ammonium in the medullary and papillary interstitium. Here, we demonstrate that sulfatides, highly charged anionic glycosphingolipids, are important for maintaining high papillary ammonium concentration and increased urinary acid elimination during metabolic acidosis. We disrupted sulfatide synthesis by a genetic approach along the entire renal tubule. Renal sulfatide-deficient mice had lower urinary pH accompanied by lower ammonium excretion. Upon acid diet, they showed impaired ammonuria, decreased ammonium accumulation in the papilla, and chronic hyperchloremic metabolic acidosis. Expression levels of ammoniagenic enzymes and Na+-K+/NH4+-2Cl− cotransporter 2 were higher, and transepithelial NH3 transport, examined by in vitro microperfusion of cortical and outer medullary collecting ducts, was unaffected in mutant mice. We therefore suggest that sulfatides act as counterions for interstitial ammonium facilitating its retention in the papilla. This study points to a seminal role of sulfatides in renal ammonium handling, urinary acidification, and acid–base homeostasis.
Analytical Chemistry | 2013
Annabelle Fülöp; Martina B. Porada; Christian Marsching; Henning Blott; Björn Meyer; Suparna Tambe; Roger Sandhoff; Hans-Dieter Junker; Carsten Hopf
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) has become a method of choice in lipid analysis, as it provides localization information for defined lipids that is not readily accessible with nonmass spectrometric methods. Most current MALDI matrices have been found empirically. Nevertheless, preferential matrix properties for many analyte classes are poorly understood and may differ between lipid classes. We used rational matrix design and semiautomated screening for the discovery of new matrices suitable for MALDI-IMS of lipids. Utilizing Smartbeam- and nitrogen lasers for MALDI, we systematically compared doubly substituted α-cyanocinnamic acid derivatives (R(1)-CCA-R(2)) with respect to their ability to serve as negative ion matrix for various brain lipids. We identified 4-phenyl-α-cyanocinnamic acid amide (Ph-CCA-NH2) as a novel negative ion matrix that enables analysis and imaging of various lipid classes by MALDI-MS. We demonstrate that Ph-CCA-NH2 displays superior sensitivity and reproducibility compared to matrices commonly employed for lipids. A relatively small number of background peaks and good matrix suppression effect could make Ph-CCA-NH2 a widely applicable tool for lipid analysis.
Journal of Lipid Research | 2013
Mariona Rabionet; Aline Bayerle; Christian Marsching; Richard Jennemann; Hermann Josef Gröne; Yildiz Yildiz; Dagmar Wachten; Walter Shaw; James A. Shayman; Roger Sandhoff
The lipid-rich stratum corneum functions as a barrier against pathogens and desiccation inter alia by an unbroken meshwork of extracellular lipid lamellae. These lamellae are composed of cholesterol, fatty acids, and ceramides (Cers) in an equimolar ratio. The huge class of skin Cers consists of three groups: group I, “classical” long and very long chain Cers; group II, ultra-long chain Cers; and group III, ω-esterified ultra-long chain Cers, which are esterified either with linoleic acid or with cornified envelope proteins and are required for the water permeability barrier. Here, we describe 1-O-acylceramides as a new class of epidermal Cers in humans and mice. These Cers contain, in both the N- and 1-O-position, long to very long acyl chains. They derive from the group I of classical Cers and make up 5% of all esterified Cers. Considering their chemical structure and hydrophobicity, we presume 1-O-acylceramides to contribute to the water barrier homeostasis. Biosynthesis of 1-O-acylceramides is not dependent on lysosomal phospholipase A2. However, glucosylceramide synthase deficiency was followed by a 7-fold increase of 1-O-acylceramides, which then contributed 30% to all esterified Cers. Furthermore, loss of neutral glucosylceramidase resulted in decreased levels of a 1-O-acylceramide subgroup. Therefore, we propose 1-O-acylceramides to be synthesized at endoplasmic reticulum-related sites.
Human Molecular Genetics | 2015
Mariona Rabionet; Aline Bayerle; Richard Jennemann; Hans Heid; Jens Fuchser; Christian Marsching; Stefan Porubsky; Christian Bolenz; Florian Guillou; Hermann Josef Gröne; Karin Gorgas; Roger Sandhoff
Somatic cell cytokinesis was shown to involve the insertion of sphingolipids (SLs) to midbodies prior to abscission. Spermatogenic midbodies transform into stable intercellular bridges (ICBs) connecting clonal daughter cells in a syncytium. This process requires specialized SL structures. (1) Using high resolution-mass spectrometric imaging, we show in situ a biphasic pattern of SL synthesis with testis-specific anchors. This pattern correlates with and depends on ceramide synthase 3 (CerS3) localization in both, pachytene spermatocytes until completion of meiosis and elongating spermatids. (2) Blocking the pathways to germ cell-specific ceramides (CerS3-KO) and further to glycosphingolipids (glucosylceramide synthase-KO) in mice highlights the need for special SLs for spermatid ICB stability. In contrast to somatic mitosis these SLs require ultra-long polyunsaturated anchors with unique physico-chemical properties, which can only be provided by CerS3. Loss of these anchors causes enhanced apoptosis during meiosis, formation of multinuclear giant cells and spermatogenic arrest. Hence, testis-specific SLs, which we also link to CerS3 in human testis, are quintessential for male fertility.
Journal of Lipid Research | 2014
Christian Marsching; Richard Jennemann; Raphael Heilig; Hermann Josef Gröne; Carsten Hopf; Roger Sandhoff
Owing to its capability of discriminating subtle mass-altering structural differences such as double bonds or elongated acyl chains, MALDI-based imaging MS (IMS) has emerged as a powerful technique for analysis of lipid distribution in tissue at moderate spatial resolution of about 50 μm. However, it is still unknown if MS1-signals and ion intensity images correlate with the corresponding apparent lipid concentrations. Analyzing renal sulfated glycosphingolipids, sulfatides, we validate for the first time IMS-signal identities using corresponding sulfatide-deficient kidneys. To evaluate the extent of signal quenching effects interfering with lipid quantification, we surgically dissected the three major renal regions (papillae, medulla, and cortex) and systematically compared MALDI IMS of renal sulfatides with quantitative analyses of corresponding lipid extracts by on-target MALDI TOF-MS and by ultra-performance LC-ESI-(triple-quadrupole)tandem MS. Our results demonstrate a generally strong correlation (R2 > 0.9) between the local relative sulfatide signal intensity in MALDI IMS and absolute sulfatide quantities determined by the other two methods. However, high concentrations of sulfatides in the papillae and medulla result in an up to 4-fold signal suppression. In conclusion, our study suggests that MALDI IMS is useful for semi-quantitative dissection of relative local changes of sulfatides and possibly other lipids in tissue.
Journal of Lipid Research | 2014
Christian Marsching; Mariona Rabionet; Daniel Mathow; Richard Jennemann; Christiane Kremser; Stefan Porubsky; Christian Bolenz; Klaus Willecke; Hermann Josef Gröne; Carsten Hopf; Roger Sandhoff
Mammalian kidneys are rich in sulfatides. Papillary sulfatides, especially, contribute to renal adaptation to chronic metabolic acidosis. Due to differences in their ceramide (Cer) anchors, the structural diversity of renal sulfatides is large. However, the underling biological function of this complexity is not understood. As a compound’s function and its tissue location are intimately connected, we analyzed individual renal sulfatide distributions of control and Cer synthase 2 (CerS)2-deficient mice by imaging MS (IMS) and by LC-MS2 (in controls for the cortex, medulla, and papillae separately). To explain locally different structures, we compared our lipid data with regional mRNA levels of corresponding anabolic enzymes. The combination of IMS and in source decay-LC-MS2 analyses revealed exclusive expression of C20-sphingosine-containing sulfatides within the renal papillae, whereas conventional C18-sphingosine-containing compounds were predominant in the medulla, and sulfatides with a C18-phytosphingosine were restricted to special cortical structures. CerS2 deletion resulted in bulk loss of sulfatides with C23/C24-acyl chains, but did not lead to decreased urinary pH, as previously observed in sulfatide-depleted kidneys. The reasons may be the almost unchanged C22-sulfatide levels and constant total renal sulfatide levels due to compensation with C16- to C20-acyl chain-containing compounds. Intriguingly, CerS2-deficient kidneys were completely depleted of phytosphingosine-containing cortical sulfatides without any compensation.
Experimental Neurology | 2018
Volkan Seyrantepe; Secil Akyildiz Demir; Zehra Kevser Timur; Johanna von Gerichten; Christian Marsching; Esra Erdemli; Emin Oztas; Kohta Takahashi; Kazunori Yamaguchi; Nurselin Ates; Buket Dönmez Demir; Turgay Dalkara; Katrin Erich; Carsten Hopf; Roger Sandhoff; Taeko Miyagi
ABSTRACT Tay‐Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the &agr; subunit of lysosomal &bgr;‐hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa−/− mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by &bgr;‐hexosaminidase B. Therefore, the presence of the sialidase (s) allows the consequences of the Hexa defect to be bypassed. To determine if the sialidase NEU3 contributes to GM2 ganglioside degradation, we generated a mouse model with combined deficiencies of HEXA and NEU3. The Hexa−/− Neu3−/− mice were healthy at birth, but died at 1.5 to 4.5 months of age. Thin‐layer chromatography and mass spectrometric analysis of the brains of Hexa−/− Neu3−/− mice revealed the abnormal accumulation of GM2 ganglioside. Histological and immunohistochemical analysis demonstrated cytoplasmic vacuolation in the neurons. Electron microscopic examination of the brain, kidneys and testes revealed pleomorphic inclusions of many small vesicles and complex lamellar structures. The Hexa−/− Neu3−/− mice exhibited progressive neurodegeneration with neuronal loss, Purkinje cell depletion, and astrogliosis. Slow movement, ataxia, and tremors were the prominent neurological abnormalities observed in these mice. Furthermore, radiographs revealed abnormalities in the skeletal bones of the Hexa−/− Neu3−/− mice. Thus, the Hexa−/− Neu3−/− mice mimic the neuropathological and clinical abnormalities of the classical early‐onset Tay‐Sachs patients, and provide a suitable model for the future pre‐clinical testing of potential treatments for this condition. HIGHLIGHTSTay‐Sachs disease (TSD) is an inborn error of metabolism, a prototypical lysosomal storage disease of the nervous system.In humans, the fatal infantile acute form is the most common with no current treatment, and palliative care the only options.TSD mice did not mimic human infantile TSD although they showed some early pathology and storage of GM2 ganglioside.We demostrated that extremely mild disease in TSD mice is likely due to a biochemical bypass, a sialidase.Murine sialidase, Neu3, responsible for the degradation of GM2 and new mouse model is suitable for the pre‐clinical testing.
Molecular genetics and metabolism reports | 2015
Zehra Kevser Timur; S. Akyildiz Demir; Christian Marsching; Roger Sandhoff; Volkan Seyrantepe
Archive | 2014
Christian Marsching; Mariona Rabionet; Daniel Mathow; Richard Jennemann; Christiane Kremser; Stefan Porubsky; Christian Bolenz; Klaus Willecke; Hermann-Josef Gröne; Carsten Hopf; Roger Sandhoff