Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Mertens is active.

Publication


Featured researches published by Christian Mertens.


Journal of Physical Oceanography | 2002

Labrador Sea Water: Pathways, CFC Inventory, and Formation Rates

Monika Rhein; Jürgen Fischer; William M. Smethie; Denise Smythe-Wright; Ray F. Weiss; Christian Mertens; Dong-Ha Min; Ulrich Fleischmann; A. Putzka

In 1997, a unique hydrographic and chlorofluorocarbon (CFC: component CFC-11) dataset was obtained in the subpolar North Atlantic. To estimate the synopticity of the 1997 data, the recent temporal evolution of the CFC and Labrador Sea Water (LSW) thickness fields are examined. In the western Atlantic north of 50°N, the LSW thickness decreased considerably from 1994–97, while the mean CFC concentrations did not change much. South of 50°N and in the eastern Atlantic, the CFC concentration increased with little or no change in the LSW thickness. On shorter timescales, local anomalies due to the presence of eddies are observed, but for space scales larger than the eddies the dataset can be treated as being synoptic over the 1997 observation period. The spreading of LSW in the subpolar North Atlantic is described in detail using gridded CFC and LSW thickness fields combined with Profiling Autonomous Lagrangian Circulation Explorer (PALACE) float trajectories. The gridded fields are also used to calculate the CFC-11 inventory in the LSW from 40° to 65°N, and from 10° to 60°W. In total, 2300 ± 250 tons of CFC-11 (equivalent to 16.6 million moles) were brought into the LSW by deep convection. In 1997, 28% of the inventory was still found in the Labrador Sea west of 45°W and 31% of the inventory was located in the eastern Atlantic. The CFC inventory in the LSW was used to estimate the lower limits of LSW formation rates. At a constant formation rate, a value of 4.4–5.6 Sv (Sv ≡ 106 m3 s−1) is obtained. If the denser modes of LSW are ventilated only in periods with intense convection, the minimum formation rate of LSW in 1988–94 is 8.1–10.8 Sv, and 1.8–2.4 Sv in 1995–97


Journal of Physical Oceanography | 1998

Interannual Variability of Deep-Water Formation in the Northwestern Mediterranean

Christian Mertens; Friedrich Schott

In the Gulf of Lions, observations of deep convection have been sporadically carried out over the past three decades, showing significant interannual variability of convection activity. As long time series of meteorological observations of the region are available from coastal stations, heat flux time series for the Gulf of Lions for the individual winters from 1969 to 1994 are derived by calibrating these observations against direct measurements obtained over the convection site. These heat fluxes are also compared against heat fluxes obtained by the French PERIDOT weather model for the winter of 1991/92. A Kraus–Turner one-dimensional mixed layer model is initialized by climatological mean temperature and salinity profiles and then driven by the heat flux time series of the individual years. Resulting convection depths are in satisfactory agreement with existing observational evidence, showing the dominance of interannual variability of local forcing on convection variability. The interannual variability of convection depth causes interannual variations in deep-water properties, and these are also compared with the hydrographic database.


Geochemistry Geophysics Geosystems | 2007

Young volcanism and related hydrothermal activity at 5°S on the slow‐spreading southern Mid‐Atlantic Ridge

Karsten M. Haase; Sven Petersen; Andrea Koschinsky; Richard Seifert; C. W. Devey; R. Keir; Klas Lackschewitz; Bernd Melchert; Mirjam Perner; Oliver Schmale; J. Süling; Nicole Dubilier; Frank Zielinski; S. Fretzdorff; Dieter Garbe-Schönberg; Ulrike Westernströer; Christopher R. German; Timothy M. Shank; Dana R. Yoerger; O. Giere; Jan Kuever; H. Marbler; J. Mawick; Christian Mertens; Uwe Stöber; Maren Walter; C. Ostertag‐Henning; Holger Paulick; Marc Peters; Harald Strauss

The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge.


Journal of Geophysical Research | 2014

Circulation and transports in the Newfoundland Basin, western subpolar North Atlantic

Christian Mertens; Monika Rhein; Maren Walter; Claus W. Böning; Erik Behrens; Dagmar Kieke; Reiner Steinfeldt; Uwe Stöber

The southwestern part of the subpolar North Atlantic east of the Grand Banks of Newfoundland and Flemish Cap is a crucial area for the Atlantic Meridional Overturning Circulation. Here the exchange between subpolar and subtropical gyre takes place, southward flowing cold and fresh water is replaced by northward flowing warm and salty water within the North Atlantic Current (NAC). As part of a long-term experiment, the circulation east of Flemish Cap has been studied by seven repeat hydrographic sections along 47 degrees N (2003-2011), a 2 year time series of current velocities at the continental slope (2009-2011), 19 years of sea surface height, and 47 years of output from an eddy resolving ocean circulation model. The structure of the flow field in the measurements and the model shows a deep reaching NAC with adjacent recirculation and two distinct cores of southward flow in the Deep Western Boundary Current (DWBC): one core above the continental slope with maximum velocities at mid-depth and the second farther east with bottom-intensified velocities. The western core of the DWBC is rather stable, while the offshore core shows high temporal variability that in the model is correlated with the NAC strength. About 30 Sv of deep water flow southward below a density of sigma=27.68 kg m(-3) in the DWBC. The NAC transports about 110 Sv northward, approximately 15 Sv originating from the DWBC, and 75 Sv recirculating locally east of the NAC, leaving 20 Sv to be supplied by the NAC from the south.


Eos, Transactions American Geophysical Union | 1996

Recent observation indicates convection' role in deep water circulation

Uwe Send; Christian Mertens; Jordi Font

Deep convection is important in forming the dense water masses that lie below the oceans surface and feed the global thermohaline circulation system. But the exact role that deep convection plays in these processes is a subject of much debate. Now, for the first time, a pulse-like temperature signal, produced when water generated by convection drains into a deep boundary current, has apparently been detected in the Mediterranean. This observation provides clues to the mechanisms by which the dense water escapes the convection region and makes its journey. While up to 50% of the newly formed water could incorporated into the deep boundary current this way, no increase in its transport was observed.


Journal of Geophysical Research | 2015

Long-term observations of North Atlantic Current transport at the gateway between western and eastern Atlantic

Achim Roessler; Monika Rhein; Dagmar Kieke; Christian Mertens

In the western North Atlantic, warm and saline water is brought by the North Atlantic Current (NAC) from the subtropics into the subpolar gyre. Four inverted echo sounders with high precision pressure sensors (PIES) were moored between 47°40′N and 52°30′N to study the main pathways of the NAC from the western into the eastern basin. The array configuration that forms three segments (northern, central, and southern) allows partitioning of the NAC and some assessment of NAC flow paths through the different Mid-Atlantic Ridge fracture zones. We exploit the correlation between the NAC transport measured between 2006 and 2010 and the geostrophic velocity from altimeter data to extend the time series of NAC transports to the period from 1992 to 2013. The mean NAC transport over the entire 21 years is 27 ± 5 Sv, consisting of 60% warm water of subtropical origin and 40% subpolar water. We did not find a significant trend in the total transport time series, but individual segments had opposing trends, leading to a more focused NAC in the central subsection and decreasing transports in the southern and northern segments. The spectral analysis exhibits several significant peaks. The two most prominent are around 120 days, identified as the time scale of meanders and eddies, and at 4–9 years, most likely related to the NAO. Transport composites for the years of highest and lowest NAO indices showed a significantly higher transport (+2.9 Sv) during strong NAO years, mainly in the southern segment.


Deep-sea Research Part I-oceanographic Research Papers | 1996

Comparison of XCTD/CTD data

Corinne Albérola; Claude Millot; Uwe Send; Christian Mertens; Jean-Luc Fuda

XCTD (eXpendable Conductivity Temperature Depth) probes, developed recently by SIPPICAN Inc., have been used simultaneously with a CTD sonde in order to test, in the field, their performance and accuracy (interpreted as ±2 standard deviations of the XCTD-CTD differences). We have taken advantage, during the THETIS-I experiment in March 1992, of both the homogeneous and the stratified areas encountered in winter in the northern part of the western Mediterranean Sea to differentiate the errors due to the experimental conditions from those effectively due to the sensors. Although some intrinsic problems are evident, so that only seven out of the nine probes considered for comparison are usable, the accuracy specified by the manufacturer for the temperature (AT = ± 0.03°C) is reached after standard processing, while the accuracies in conductivity, salinity and potential density are AC ≈ ± 0.06 mS/cm (the specified value is AC = ± 0.03 mS/cm), AS ≈ ± 0.04 and Aσθ ≈ ±3 kg/m3. However, when the experimental errors (in situ natural variability, relatively rough estimation of the XCTD depth) are considered, it appears that the effective accuracies of the XCTD sensors are better than ± 0.02°C and ± 0.04 mS/cm, that is to say better than and close to the specified values of ± 0.03°C and ± 0.03 mS/cm. Occasional offsets in conductivity can further be well corrected for by using a temperature-salinity relation in some limited depth range and area where this relation is known to hold well; the conductivity-sensor accuracy then significantly improves to AC≈ ± 0.02 mS/cm resulting, for our study area, in corresponding salinity and potential density accuracies of AS≈ ± 0.03 and Aσθ ≈ ± 0.02 kg/m3. Thus, such instruments promise to be useful tools for many experimental studies. Complementary comparisons, performed with new versions of the XCTD probes under less convenient experimental conditions, are also presented


Journal of Geophysical Research | 2017

Flow paths and variability of the North Atlantic Current: A comparison of observations and a high-resolution model

Tilia Breckenfelder; Monika Rhein; Achim Roessler; Claus W. Böning; Arne Biastoch; Erik Behrens; Christian Mertens

The North Atlantic Current (NAC) is subject to variability on multiannual to decadal time scales, influencing the transport of volume, heat, and freshwater from the subtropical to the eastern subpolar North Atlantic (NA). Current observational time series are either too short or too episodic to study the processes involved. Here we compare the observed continuous NAC transport time series at the western flank of the Mid-Atlantic Ridge (MAR) and repeat hydrographic measurements at the OVIDE line in the eastern Atlantic with the NAC transport and circulation in the high-resolution (1/20°) ocean model configuration VIKING20 (1960–2008). The modeled baroclinic NAC transport relative to 3400 m (24.5 ± 7.1 Sv) at the MAR is only slightly lower than the observed baroclinic mean of 27.4 ± 4.7 Sv from 1993 to 2008, and extends further north by about 0.5°. In the eastern Atlantic, the western NAC (WNAC) carries the bulk of the transport in the model, while transport estimates based on hydrographic measurements from five repeated sections point to a preference for the eastern NAC (ENAC). The model is able to simulate the main features of the subpolar NA, providing confidence to use the model output to analyze the influence of the North Atlantic Oscillation (NAO). Model based velocity composites reveal an enhanced NAC transport across the MAR of up to 6.7 Sv during positive NAO phases. Most of that signal (5.4 Sv) is added to the ENAC transport, while the transport of the WNAC was independent of the NAO.


Journal of Physical Oceanography | 2014

Variability in the Internal Wave Field Induced by the Atlantic Deep Western Boundary Current at 16°N

Janna Köhler; Christian Mertens; Maren Walter; Uwe Stöber; Monika Rhein; Torsten Kanzow

AbstractFive years of continuous mooring data combined with conductivity–temperature–depth (CTD)/lowered acoustic Doppler current profiler (LADCP) measurements from five cruises are used to investigate the influence of the deep western boundary current (DWBC) on the internal wave field and associated vertical mixing at the continental slope at 16°N in the western Atlantic. The mooring data include 2-hourly rotor current-meter measurements and temperature/conductivity time series with a high temporal resolution of 5–20 min. Thus, the data resolve time scales ranging from the low-frequency variability of the large-scale DWBC that generates internal waves due to interactions with the topography to frequencies greater than that of internal waves that are associated with vertical mixing. Estimates of the vertical mixing induced by the breaking of the observed internal waves show elevated diapycnal diffusivities of up to 10−3 ± 0.4 × 10−3 m2 s−1 in the bottommost 1500 m during times of a strong DWBC (maximum ve...


Journal of Geophysical Research | 2017

Temperature flux carried by individual eddies across 47°N in the Atlantic Ocean

Vasco Müller; Dagmar Kieke; Paul G. Myers; Clark Pennelly; Christian Mertens

Surface geostrophic velocity fields derived from satellite-altimetry between January 1993 and April 2014 are used to detect and investigate eddies in the North Atlantic between 40°-55°N and 60°-10°W. Focus is on a zonal section along 47°N, roughly at the boundary between the subpolar and the subtropical gyres. Sea surface temperature data are used to quantify the temperature anomalies associated with eddies and the respective surface temperature fluxes related to these eddies. Identified eddy pathways across 47°N are related to the mean background velocity from full-depth ship observations carried out on 11 cruises between 2003 and 2014. The analysis is repeated in two model simulations with 1/4° and 1/12° horizontal resolution, respectively for the period 2002-2013. The analysis reveals almost 37000 altimeter-derived eddies with a lifetime longer than one week in the area. The highest number of eddies is found along the pathway of the North Atlantic Current, roughly following the 4000 m isobath, and on the Grand Banks of Newfoundland. Time series of temperature fluxes by eddies crossing 47°N reveal that single isolated eddies with large SST signatures contribute ∼25% to the surface temperature flux. Relating the observed eddies to the observed top-to-bottom velocity distribution at 47°N points to the existence of eddy pathways across 47°. The highest temperature fluxes are linked to the fastest and most pronounced current branches in the western Newfoundland Basin. While there are fewer eddies in both model simulations, the key findings are consistent between the observations and the two model simulations. This article is protected by copyright. All rights reserved.

Collaboration


Dive into the Christian Mertens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher R. German

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Dana R. Yoerger

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge