Dagmar Kieke
University of Bremen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dagmar Kieke.
Journal of Physical Oceanography | 2006
Dagmar Kieke; Monika Rhein; Lothar Stramma; William M. Smethie; Deborah A. LeBel; Walter Zenk
Abstract Chlorofluorocarbon (component CFC-11) and hydrographic data from 1997, 1999, and 2001 are presented to track the large-scale spreading of the Upper Labrador Sea Water (ULSW) in the subpolar gyre of the North Atlantic Ocean. ULSW is CFC rich and comparatively low in salinity. It is located on top of the denser “classical” Labrador Sea Water (LSW), defined in the density range σΘ = 27.68–27.74 kg m−3. It follows spreading pathways similar to LSW and has entered the eastern North Atlantic. Despite data gaps, the CFC-11 inventories of ULSW in the subpolar North Atlantic (40°–65°N) could be estimated within 11%. The inventory increased from 6.0 ± 0.6 million moles in 1997 to 8.1 ± 0.6 million moles in 1999 and to 9.5 ± 0.6 million moles in 2001. CFC-11 inventory estimates were used to determine ULSW formation rates for different periods. For 1970–97, the mean formation rate resulted in 3.2–3.3 Sv (Sv ≡ 106 m3 s−1). To obtain this estimate, 5.0 million moles of CFC-11 located in 1997 in the ULSW in the...
Journal of Geophysical Research | 2015
Monika Rhein; Dagmar Kieke; Reiner Steinfeldt
Recently formed Labrador Seawater (LSW) and overflow water from Denmark Strait (DSOW) are main components of the Atlantic Meridional Overturning Circulation. Both exhibit a distinct chlorofluorocarbon (CFC) maximum. Here we use 25 years of CFC observations in the Atlantic to study the main features of the circulation of LSW and DSOW. From the CFC data, the age and fraction of young deep water are inferred. Due to the superior spatial data resolution compared to former attempts, regional differences in the spreading velocity and pathways of young deep water become evident, dependent on the regional circulation. The observed distributions of young LSW and DSOW showed that the DWBC is the fastest pathway to reach the southern hemisphere. The downstream decrease of the fractions of young LSW in the DWBC is slower compared to model studies. From 47°N to 42°N, DWBC transports of young LSW and DSOW decrease by 44% and 49%, respectively. At 26°N, the DWBC transport of young water is still 39% of the LSW formation rate and 44% of the DSOW overflow transport. Interior pathways also exist, especially in the subpolar North Atlantic and in the transition zone between the subpolar and subtropical gyre. Compared to DSOW, the distributions indicate a higher tendency for LSW to follow additional interior pathways. North of 45°N the major part of LSW is younger than 20 years. The general weakening of new LSW formation since the 1990s worked toward a homogenization between the LSW in the western and the eastern subpolar North Atlantic.
Journal of Geophysical Research | 2014
Christian Mertens; Monika Rhein; Maren Walter; Claus W. Böning; Erik Behrens; Dagmar Kieke; Reiner Steinfeldt; Uwe Stöber
The southwestern part of the subpolar North Atlantic east of the Grand Banks of Newfoundland and Flemish Cap is a crucial area for the Atlantic Meridional Overturning Circulation. Here the exchange between subpolar and subtropical gyre takes place, southward flowing cold and fresh water is replaced by northward flowing warm and salty water within the North Atlantic Current (NAC). As part of a long-term experiment, the circulation east of Flemish Cap has been studied by seven repeat hydrographic sections along 47 degrees N (2003-2011), a 2 year time series of current velocities at the continental slope (2009-2011), 19 years of sea surface height, and 47 years of output from an eddy resolving ocean circulation model. The structure of the flow field in the measurements and the model shows a deep reaching NAC with adjacent recirculation and two distinct cores of southward flow in the Deep Western Boundary Current (DWBC): one core above the continental slope with maximum velocities at mid-depth and the second farther east with bottom-intensified velocities. The western core of the DWBC is rather stable, while the offshore core shows high temporal variability that in the model is correlated with the NAC strength. About 30 Sv of deep water flow southward below a density of sigma=27.68 kg m(-3) in the DWBC. The NAC transports about 110 Sv northward, approximately 15 Sv originating from the DWBC, and 75 Sv recirculating locally east of the NAC, leaving 20 Sv to be supplied by the NAC from the south.
Journal of Geophysical Research | 2015
Achim Roessler; Monika Rhein; Dagmar Kieke; Christian Mertens
In the western North Atlantic, warm and saline water is brought by the North Atlantic Current (NAC) from the subtropics into the subpolar gyre. Four inverted echo sounders with high precision pressure sensors (PIES) were moored between 47°40′N and 52°30′N to study the main pathways of the NAC from the western into the eastern basin. The array configuration that forms three segments (northern, central, and southern) allows partitioning of the NAC and some assessment of NAC flow paths through the different Mid-Atlantic Ridge fracture zones. We exploit the correlation between the NAC transport measured between 2006 and 2010 and the geostrophic velocity from altimeter data to extend the time series of NAC transports to the period from 1992 to 2013. The mean NAC transport over the entire 21 years is 27 ± 5 Sv, consisting of 60% warm water of subtropical origin and 40% subpolar water. We did not find a significant trend in the total transport time series, but individual segments had opposing trends, leading to a more focused NAC in the central subsection and decreasing transports in the southern and northern segments. The spectral analysis exhibits several significant peaks. The two most prominent are around 120 days, identified as the time scale of meanders and eddies, and at 4–9 years, most likely related to the NAO. Transport composites for the years of highest and lowest NAO indices showed a significantly higher transport (+2.9 Sv) during strong NAO years, mainly in the southern segment.
Journal of Physical Oceanography | 2006
Dagmar Kieke; Monika Rhein
Abstract One of the major topics in current field research is the question of whether or to what extent the North Atlantic Ocean is subject to changes in water mass transports, and how they are related to atmospheric phenomena like the North Atlantic Oscillation (NAO). Bottle and CTD data from the 1950s to 1990s are presented to reconstruct spatially and temporally the baroclinic contribution to the deep water transports in the western subpolar North Atlantic. The focus is on the two densest components of North Atlantic Deep Water: the Gibbs Fracture Zone Water (GFZW) and the Denmark Strait Overflow Water (DSOW). Direct velocity measurements in the considered time period are sparse. For this reason it was decided to calculate the geostrophic velocity relative to 1400 dbar. This level is located in the weakly stratified Labrador Sea Water. The combined baroclinic volume transport of GFZW and DSOW during the early 1990s was about 5 Sv (Sv ≡ 106 m3 s−1) in the Irminger Sea and 7–8 Sv in the Labrador Sea. Nea...
Journal of Geophysical Research | 2014
Patrick Scholz; Dagmar Kieke; Gerrit Lohmann; Monica Ionita; Monika Rhein
The deep water formation in the Labrador Sea is simulated with the Finite-Element Sea-Ice Ocean Model (FESOM) in a regionally focused, but globally covered model setup. The model has a regional resolution of up to 7 km, and the simulations cover the time period 1958–2009. We evaluate the capability of the model setup to reproduce a realistic deep water formation in the Labrador Sea. Two classes of modeled Labrador Sea Water (LSW), the lighter upper LSW (uLSW) and the denser deep LSW (dLSW), are analyzed. Their layer thicknesses are compared to uLSW and dLSW layer thicknesses derived from observations in the formation region for the time interval 1988–2009. The results indicate a suitable agreement between the modeled and observational derived uLSW and dLSW layer thicknesses except for the period 2003–2007 where deviations in the modeled and observational derived layer thicknesses could be linked to discrepancies in the atmospheric forcing of the model. It is shown that the model is able to reproduce four phases in the temporal evolution of the potential density, temperature, and salinity, since the late 1980s, which are known in observational data. These four phases are characterized by a significantly different LSW formation. The first phase from 1988 to 1990 is characterized in the model by a fast increase in the convection depth of up to 2000 m, accompanied by an increased spring production of deep Labrador Sea Water (dLSW). In the second phase (1991–1994), the dLSW layer thickness remains on a high level for several years, while the third phase (1995–1998) features a gradual decrease in the deep ventilation and the renewal of the deep ocean layers. The fourth phase from 1999 to 2009 is characterized by a slowly continuing decrease of the dLSW layer thickness on a deeper depth level. By applying a composite map analysis between an index of dLSW and sea level pressure over the entire simulation period from 1958 to 2009, it is shown that a pattern which resembles the structure of the North Atlantic Oscillation (NAO) is one of the main triggers for the variability of LSW formation. Our model results indicate that the process of dLSW formation can act as a low-pass filter to the atmospheric forcing, so that only persistent NAO events have an effect, whether uLSW or dLSW is formed. Based on composite maps of the thermal and haline contributions to the surface density flux we can demonstrate that the central Labrador Sea in the model is dominated by the thermal contributions of the surface density flux, while the haline contributions are stronger over the branch of the Labrador Sea boundary current system (LSBCS), where they are dominated by the haline contributions of sea ice melting and formation. Our model results feature a shielding of the central Labrador Sea from the haline contributions by the LSBCS, which only allows a minor haline interaction with the central Labrador Sea by lateral mixing. Based on the comparison of the simulated and measured LSW layer thicknesses as well as vertical profiles of potential density, temperature, and salinity it is shown that the FESOM model is a suitable tool to study the regional dynamics of LSW formation and its impact on a global, not regional restricted, scale.
Journal of Geophysical Research | 2015
Eirini Varotsou; Kerstin Jochumsen; Nuno Serra; Dagmar Kieke; Linn Schneider
The transport of Upper Labrador Sea Water (ULSW) at Flemish Cap (47°N/45°W) is investigated in the period 1960–2009 using the output from an 8 km resolution numerical ocean model. The average model transport of ULSW decreases southward from 6.7 Sv at 53°N to 4.5 Sv at 45°N due to interior pathways. The largest fraction of the total ULSW volume transport goes around Flemish Cap within the Deep Western Boundary Current (DWBC, 72%) but a significant part goes through Flemish Pass (20%). At interannual timescales, the variability at Flemish Pass shows a distinct behavior when compared to the variability in the DWBC and to the upstream fluctuations. A running correlation method is applied to obtain the connection of the transport variability at Flemish Pass with several quantities, representative for different physical mechanisms: (1) the North Atlantic Oscillation index, (2) the Ekman transport, (3) the rate of ULSW formation in the Labrador Sea, (4) the position of the North Atlantic Current (NAC) relative to the slope and (5) the averaged transport in the subpolar gyre. Weakened or strengthened transport of ULSW through Flemish Pass coincides with changes of the atmospheric forcing or with changes of the NAC‘s position. Strong meandering of the NAC close to the DWBC reduces the transport off Flemish Cap, and the ULSW flow is “redirected” into the Flemish Pass, enhancing the transport there. In contrast, the transport variability in the DWBC is mainly caused by upstream fluctuations and changes according to the rate of ULSW formation.
Philosophical Transactions of the Royal Society A | 2017
Monika Rhein; Reiner Steinfeldt; Dagmar Kieke; I. Stendardo; Igor Yashayaev
Ventilation of Labrador Sea Water (LSW) receives ample attention because of its potential relation to the strength of the Atlantic Meridional Overturning Circulation (AMOC). Here, we provide an overview of the changes of LSW from observations in the Labrador Sea and from the southern boundary of the subpolar gyre at 47° N. A strong winter-time atmospheric cooling over the Labrador Sea led to intense and deep convection, producing a thick and dense LSW layer as, for instance, in the early to mid-1990s. The weaker convection in the following years mostly ventilated less dense LSW vintages and also reduced the supply of oxygen. As a further consequence, the rate of uptake of anthropogenic carbon by LSW decreased between the two time periods 1996–1999 and 2007–2010 in the western subpolar North Atlantic. In the eastern basins, the rate of increase in anthropogenic carbon became greater due to the delayed advection of LSW that was ventilated in previous years. Starting in winter 2013/2014 and prevailing at least into winter 2015/2016, production of denser and more voluminous LSW resumed. Increasing oxygen signals have already been found in the western boundary current at 47° N. On decadal and shorter time scales, anomalous cold atmospheric conditions over the Labrador Sea lead to an intensification of convection. On multi-decadal time scales, the ‘cold blob’ in the subpolar North Atlantic projected by climate models in the next 100 years is linked to a weaker AMOC and weaker convection (and thus deoxygenation) in the Labrador Sea. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.
Journal of Geophysical Research | 2015
Linn Schneider; Dagmar Kieke; Kerstin Jochumsen; Eugene Colbourne; Igor Yashayaev; Reiner Steinfeldt; Eirini Varotsou; Nuno Serra; Monika Rhein
Flemish Pass, located at the western subpolar margin, is a passage (sill depth 1200 m) that is constrained by the Grand Banks and the underwater plateau Flemish Cap. In addition to the Deep Western Boundary Current (DWBC) pathway offshore of Flemish Cap, Flemish Pass represents another southward transport pathway for two modes of Labrador Sea Water (LSW), the lightest component of North Atlantic Deep Water carried with the DWBC. This pathway avoids potential stirring regions east of Flemish Cap and deflection into the interior North Atlantic. Ship-based velocity measurements between 2009 and 2013 at 47°N in Flemish Pass and in the DWBC east of Flemish Cap revealed a considerable southward transport of Upper LSW through Flemish Pass (15–27%, −1.0 to −1.5 Sv). About 98% of the denser Deep LSW were carried around Flemish Cap as Flemish Pass is too shallow for considerable transport of Deep LSW. Hydrographic time series from ship-based measurements show a significant warming of 0.3°C/decade and a salinification of 0.03/decade of the Upper LSW in Flemish Pass between 1993 and 2013. Almost identical trends were found for the evolution in the Labrador Sea and in the DWBC east of Flemish Cap. This indicates that the long-term hydrographic variability of Upper LSW in Flemish Pass as well as in the DWBC at 47°N is dominated by changes in the Labrador Sea, which are advected southward. Fifty years of numerical ocean model simulations in Flemish Pass suggest that these trends are part of a multidecadal cycle.
Journal of Geophysical Research | 2017
Vasco Müller; Dagmar Kieke; Paul G. Myers; Clark Pennelly; Christian Mertens
Surface geostrophic velocity fields derived from satellite-altimetry between January 1993 and April 2014 are used to detect and investigate eddies in the North Atlantic between 40°-55°N and 60°-10°W. Focus is on a zonal section along 47°N, roughly at the boundary between the subpolar and the subtropical gyres. Sea surface temperature data are used to quantify the temperature anomalies associated with eddies and the respective surface temperature fluxes related to these eddies. Identified eddy pathways across 47°N are related to the mean background velocity from full-depth ship observations carried out on 11 cruises between 2003 and 2014. The analysis is repeated in two model simulations with 1/4° and 1/12° horizontal resolution, respectively for the period 2002-2013. The analysis reveals almost 37000 altimeter-derived eddies with a lifetime longer than one week in the area. The highest number of eddies is found along the pathway of the North Atlantic Current, roughly following the 4000 m isobath, and on the Grand Banks of Newfoundland. Time series of temperature fluxes by eddies crossing 47°N reveal that single isolated eddies with large SST signatures contribute ∼25% to the surface temperature flux. Relating the observed eddies to the observed top-to-bottom velocity distribution at 47°N points to the existence of eddy pathways across 47°. The highest temperature fluxes are linked to the fastest and most pronounced current branches in the western Newfoundland Basin. While there are fewer eddies in both model simulations, the key findings are consistent between the observations and the two model simulations. This article is protected by copyright. All rights reserved.