Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Milani is active.

Publication


Featured researches published by Christian Milani.


Current Opinion in Biotechnology | 2013

Bacteria as vitamin suppliers to their host: a gut microbiota perspective

Jean Guy LeBlanc; Christian Milani; Graciela Savoy de Giori; Fernando Sesma; Douwe van Sinderen; Marco Ventura

Food-related lactic acid bacteria (LAB) as well as human gut commensals such as bifidobacteria can de novo synthesize and supply vitamins. This is important since humans lack the biosynthetic capacity for most vitamins and these must thus be provided exogenously. Although vitamins are present in a variety of foods, deficiencies still occur, mainly due to malnutrition as a result of insufficient food intake and because of poor eating habits. Fermented milks with high levels of B-group vitamins (such as folate and riboflavin) can be produced by LAB-promoted and possibly bifidobacteria-promoted biosynthesis. Moreover, certain strains of LAB produce the complex vitamin cobalamin (or vitamin B12). In this review, fermented foods with elevated levels of B-group vitamins produced by LAB used as starter cultures will be covered. In addition, genetic abilities for vitamin biosynthesis by selected human gut commensals will be discussed.


Mbio | 2014

Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus

Arancha Hevia; Christian Milani; Patricia López; Adriana Cuervo; Silvia Arboleya; Sabrina Duranti; Francesca Turroni; Sonia González; Ana Suárez; Miguel Gueimonde; Marco Ventura; Borja Sánchez; Abelardo Margolles

ABSTRACT Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disease in humans and is characterized by the presence of hyperactive immune cells and aberrant antibody responses to nuclear and cytoplasmic antigens, including characteristic anti–double-stranded DNA antibodies. We performed a cross-sectional study in order to determine if an SLE-associated gut dysbiosis exists in patients without active disease. A group of 20 SLE patients in remission, for which there was strict inclusion and exclusion criteria, was recruited, and we used an optimized Ion Torrent 16S rRNA gene-based analysis protocol to decipher the fecal microbial profiles of these patients and compare them with those of 20 age- and sex-matched healthy control subjects. We found diversity to be comparable based on Shannon’s index. However, we saw a significantly lower Firmicutes/Bacteroidetes ratio in SLE individuals (median ratio, 1.97) than in healthy subjects (median ratio, 4.86; P < 0.002). A lower Firmicutes/Bacteroidetes ratio in SLE individuals was corroborated by quantitative PCR analysis. Notably, a decrease of some Firmicutes families was also detected. This dysbiosis is reflected, based on in silico functional inference, in an overrepresentation of oxidative phosphorylation and glycan utilization pathways in SLE patient microbiota. IMPORTANCE Growing evidence suggests that the gut microbiota might impact symptoms and progression of some autoimmune diseases. However, how and why this microbial community influences SLE remains to be elucidated. This is the first report describing an SLE-associated intestinal dysbiosis, and it contributes to the understanding of the interplay between the intestinal microbiota and the host in autoimmune disorders. Growing evidence suggests that the gut microbiota might impact symptoms and progression of some autoimmune diseases. However, how and why this microbial community influences SLE remains to be elucidated. This is the first report describing an SLE-associated intestinal dysbiosis, and it contributes to the understanding of the interplay between the intestinal microbiota and the host in autoimmune disorders.


PLOS ONE | 2013

Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol

Christian Milani; Arancha Hevia; Elena Foroni; Sabrina Duranti; Francesca Turroni; Gabriele Andrea Lugli; Borja Sánchez; Rebeca Martín; Miguel Gueimonde; Douwe van Sinderen; Abelardo Margolles; Marco Ventura

Assessing the distribution of 16S rRNA gene sequences within a biological sample represents the current state-of-the-art for determination of human gut microbiota composition. Advances in dissecting the microbial biodiversity of this ecosystem have very much been dependent on the development of novel high-throughput DNA sequencing technologies, like the Ion Torrent. However, the precise representation of this bacterial community may be affected by the protocols used for DNA extraction as well as by the PCR primers employed in the amplification reaction. Here, we describe an optimized protocol for 16S rRNA gene-based profiling of the fecal microbiota.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium–host interactions

Francesca Turroni; Fausta Serafini; Elena Foroni; Sabrina Duranti; Mary O’Connell Motherway; Valentina Taverniti; Marta Mangifesta; Christian Milani; Alice Viappiani; Tommaso Roversi; Borja Sánchez; Andrea Santoni; Laura Gioiosa; Alberto Ferrarini; Massimo Delledonne; Abelardo Margolles; Laura Piazza; Paola Palanza; Angelo Bolchi; Simone Guglielmetti; Douwe van Sinderen; Marco Ventura

Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-α response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity.


Applied and Environmental Microbiology | 2014

Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium

Christian Milani; Gabriele Andrea Lugli; Sabrina Duranti; Francesca Turroni; Francesca Bottacini; Marta Mangifesta; Borja Sánchez; Alice Viappiani; Leonardo Mancabelli; Bernard Taminiau; Véronique Delcenserie; Rodolphe Barrangou; Abelardo Margolles; Douwe van Sinderen; Marco Ventura

ABSTRACT Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes.


Applied and Environmental Microbiology | 2014

Genomic Overview and Biological Functions of Exopolysaccharide Biosynthesis in Bifidobacterium spp.

Claudio Hidalgo-Cantabrana; Borja Sánchez; Christian Milani; Marco Ventura; Abelardo Margolles; Patricia Ruas-Madiedo

ABSTRACT For many years, bacterial exopolysaccharides (EPS) have received considerable scientific attention, mainly due to their contribution to biofilm formation and, above all, because EPS are potential virulence factors. In recent times, interest in EPS research has enjoyed a welcome boost thanks to the discovery of their ability to mediate communication processes with their surrounding environment and to their contribution to host health maintenance. In this review, we provide a fresh perspective on the genetics and activity of these polymers in members of the Bifidobacterium genus, a common gut inhabitant of humans and animals that has been associated with several health-promoting effects. Bifidobacteria can use EPS to protect themselves against the harsh conditions of the gastrointestinal tract, thus improving their persistence in the host. Indeed, the relevant function of EPS for bifidobacteria is underlined by the fact that most genomes sequenced until now contain genes related to EPS biosynthesis. A high interspecies variability in the number of genes and structural organization is denoted among species/subspecies; thus, eps clusters in this genus do not display a consensus genetic architecture. Their different G+C content compared to that of the whole genome suggests that eps genes have been acquired by horizontal transfer. From the host perspective, EPS-producing bifidobacteria are able to trigger both innate and adaptive immune responses, and they are able to modulate the composition and activity of the gut microbiota. Thus, these polymers seem to be critical in understanding the physiology of bifidobacteria and their interaction with the host.


PLOS ONE | 2015

Antibiotics in Early Life Alter the Gut Microbiome and Increase Disease Incidence in a Spontaneous Mouse Model of Autoimmune Insulin-Dependent Diabetes

Sophie Candon; Alicia Perez-Arroyo; Cindy Marquet; Fabrice Valette; Anne-Perrine Foray; Benjamin Pelletier; Christian Milani; Marco Ventura; Jean-François Bach; Lucienne Chatenoud

Insulin-dependent or type 1 diabetes is a prototypic autoimmune disease whose incidence steadily increased over the past decades in industrialized countries. Recent evidence suggests the importance of the gut microbiota to explain this trend. Here, non-obese diabetic (NOD) mice that spontaneously develop autoimmune type 1 diabetes were treated with different antibiotics to explore the influence of a targeted intestinal dysbiosis in the progression of the disease. A mixture of wide spectrum antibiotics (i.e. streptomycin, colistin and ampicillin) or vancomycin alone were administered orally from the moment of conception, treating breeding pairs, and during the postnatal and adult life until the end of follow-up at 40 weeks. Diabetes incidence significantly and similarly increased in male mice following treatment with these two antibiotic regimens. In NOD females a slight yet not significant trend towards an increase in disease incidence was observed. Changes in gut microbiota composition were assessed by sequencing the V3 region of bacterial 16S rRNA genes. Administration of the antibiotic mixture resulted in near complete ablation of the gut microbiota. Vancomycin treatment led to increased Escherichia, Lactobacillus and Sutterella genera and decreased members of the Clostridiales order and Lachnospiraceae, Prevotellaceae and Rikenellaceae families, as compared to control mice. Massive elimination of IL-17-producing cells, both CD4+TCRαβ+ and TCRγδ+ T cells was observed in the lamina propria of the ileum and the colon of vancomycin-treated mice. These results show that a directed even partial ablation of the gut microbiota, as induced by vancomycin, significantly increases type 1 diabetes incidence in male NOD mice thus prompting for caution in the use of antibiotics in pregnant women and newborns.


BMC Genomics | 2014

Comparative genomics of the Bifidobacterium breve taxon

Francesca Bottacini; Mary O’Connell Motherway; Justin Kuczynski; Kerry Joan O’Connell; Fausta Serafini; Sabrina Duranti; Christian Milani; Francesca Turroni; Gabriele Andrea Lugli; Aldert Zomer; Daria Zhurina; Christian U. Riedel; Marco Ventura; Douwe van Sinderen

BackgroundBifidobacteria are commonly found as part of the microbiota of the gastrointestinal tract (GIT) of a broad range of hosts, where their presence is positively correlated with the host’s health status. In this study, we assessed the genomes of thirteen representatives of Bifidobacterium breve, which is not only a frequently encountered component of the (adult and infant) human gut microbiota, but can also be isolated from human milk and vagina.ResultsIn silico analysis of genome sequences from thirteen B. breve strains isolated from different environments (infant and adult faeces, human milk, human vagina) shows that the genetic variability of this species principally consists of hypothetical genes and mobile elements, but, interestingly, also genes correlated with the adaptation to host environment and gut colonization. These latter genes specify the biosynthetic machinery for sortase-dependent pili and exopolysaccharide production, as well as genes that provide protection against invasion of foreign DNA (i.e. CRISPR loci and restriction/modification systems), and genes that encode enzymes responsible for carbohydrate fermentation. Gene-trait matching analysis showed clear correlations between known metabolic capabilities and characterized genes, and it also allowed the identification of a gene cluster involved in the utilization of the alcohol-sugar sorbitol.ConclusionsGenome analysis of thirteen representatives of the B. breve species revealed that the deduced pan-genome exhibits an essentially close trend. For this reason our analyses suggest that this number of B. breve representatives is sufficient to fully describe the pan-genome of this species. Comparative genomics also facilitated the genetic explanation for differential carbon source utilization phenotypes previously observed in different strains of B. breve.


PLOS ONE | 2012

Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut

Francesca Bottacini; Christian Milani; Francesca Turroni; Borja Sánchez; Elena Foroni; Sabrina Duranti; Fausta Serafini; Alice Viappiani; Francesco Strati; Alberto Ferrarini; Massimo Delledonne; Bernard Henrissat; Pedro M. Coutinho; Gerald F. Fitzgerald; Abelardo Margolles; Douwe van Sinderen; Marco Ventura

Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration.


Applied and Environmental Microbiology | 2014

Investigation of the evolutionary development of the genus bifidobacterium by comparative genomics

Gabriele Andrea Lugli; Christian Milani; Francesca Turroni; Sabrina Duranti; Chiara Ferrario; Alice Viappiani; Leonardo Mancabelli; Marta Mangifesta; Bernard Taminiau; Véronique Delcenserie; Douwe van Sinderen; Marco Ventura

ABSTRACT The Bifidobacterium genus currently encompasses 48 recognized taxa, which have been isolated from different ecosystems. However, the current phylogeny of bifidobacteria is hampered by the relative paucity of genotypic data. Here, we reassessed the taxonomy of this bacterial genus using genome-based approaches, which demonstrated that the previous taxonomic view of bifidobacteria contained several inconsistencies. In particular, high levels of genetic relatedness were shown to exist between particular Bifidobacterium taxa which would not justify their status as separate species. The results presented are here based on average nucleotide identity analysis involving the genome sequences for each type strain of the 48 bifidobacterial taxa, as well as phylogenetic comparative analysis of the predicted core genome of the Bifidobacterium genus. The results of this study demonstrate that the availability of complete genome sequences allows the reconstruction of a more robust bifidobacterial phylogeny than that obtained from a single gene-based sequence comparison, thus discouraging the assignment of a new or separate bifidobacterial taxon without such a genome-based validation.

Collaboration


Dive into the Christian Milani's collaboration.

Top Co-Authors

Avatar

Marco Ventura

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abelardo Margolles

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge