Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Mangifesta is active.

Publication


Featured researches published by Marta Mangifesta.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium–host interactions

Francesca Turroni; Fausta Serafini; Elena Foroni; Sabrina Duranti; Mary O’Connell Motherway; Valentina Taverniti; Marta Mangifesta; Christian Milani; Alice Viappiani; Tommaso Roversi; Borja Sánchez; Andrea Santoni; Laura Gioiosa; Alberto Ferrarini; Massimo Delledonne; Abelardo Margolles; Laura Piazza; Paola Palanza; Angelo Bolchi; Simone Guglielmetti; Douwe van Sinderen; Marco Ventura

Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-α response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity.


Applied and Environmental Microbiology | 2014

Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium

Christian Milani; Gabriele Andrea Lugli; Sabrina Duranti; Francesca Turroni; Francesca Bottacini; Marta Mangifesta; Borja Sánchez; Alice Viappiani; Leonardo Mancabelli; Bernard Taminiau; Véronique Delcenserie; Rodolphe Barrangou; Abelardo Margolles; Douwe van Sinderen; Marco Ventura

ABSTRACT Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes.


Applied and Environmental Microbiology | 2014

Investigation of the evolutionary development of the genus bifidobacterium by comparative genomics

Gabriele Andrea Lugli; Christian Milani; Francesca Turroni; Sabrina Duranti; Chiara Ferrario; Alice Viappiani; Leonardo Mancabelli; Marta Mangifesta; Bernard Taminiau; Véronique Delcenserie; Douwe van Sinderen; Marco Ventura

ABSTRACT The Bifidobacterium genus currently encompasses 48 recognized taxa, which have been isolated from different ecosystems. However, the current phylogeny of bifidobacteria is hampered by the relative paucity of genotypic data. Here, we reassessed the taxonomy of this bacterial genus using genome-based approaches, which demonstrated that the previous taxonomic view of bifidobacteria contained several inconsistencies. In particular, high levels of genetic relatedness were shown to exist between particular Bifidobacterium taxa which would not justify their status as separate species. The results presented are here based on average nucleotide identity analysis involving the genome sequences for each type strain of the 48 bifidobacterial taxa, as well as phylogenetic comparative analysis of the predicted core genome of the Bifidobacterium genus. The results of this study demonstrate that the availability of complete genome sequences allows the reconstruction of a more robust bifidobacterial phylogeny than that obtained from a single gene-based sequence comparison, thus discouraging the assignment of a new or separate bifidobacterial taxon without such a genome-based validation.


Scientific Reports | 2015

Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut

Christian Milani; Gabriele Andrea Lugli; Sabrina Duranti; Francesca Turroni; Leonardo Mancabelli; Chiara Ferrario; Marta Mangifesta; Arancha Hevia; Alice Viappiani; Matthias Scholz; Stefania Arioli; Borja Sánchez; Jonathan A. Lane; Doyle V. Ward; Rita M. Hickey; Diego Mora; Nicola Segata; Abelardo Margolles; Douwe van Sinderen; Marco Ventura

Bifidobacteria are common and frequently dominant members of the gut microbiota of many animals, including mammals and insects. Carbohydrates are considered key carbon sources for the gut microbiota, imposing strong selective pressure on the complex microbial consortium of the gut. Despite its importance, the genetic traits that facilitate carbohydrate utilization by gut microbiota members are still poorly characterized. Here, genome analyses of 47 representative Bifidobacterium (sub)species revealed the genes predicted to be required for the degradation and internalization of a wide range of carbohydrates, outnumbering those found in many other gut microbiota members. The glycan-degrading abilities of bifidobacteria are believed to reflect available carbon sources in the mammalian gut. Furthermore, transcriptome profiling of bifidobacterial genomes supported the involvement of various chromosomal loci in glycan metabolism. The widespread occurrence of bifidobacterial saccharolytic features is in line with metagenomic and metatranscriptomic datasets obtained from human adult/infant faecal samples, thereby supporting the notion that bifidobacteria expand the human glycobiome. This study also underscores the hypothesis of saccharidic resource sharing among bifidobacteria through species-specific metabolic specialization and cross feeding, thereby forging trophic relationships between members of the gut microbiota.


Applied and Environmental Microbiology | 2015

Exploring Vertical Transmission of Bifidobacteria from Mother to Child

Christian Milani; Leonardo Mancabelli; Gabriele Andrea Lugli; Sabrina Duranti; Francesca Turroni; Chiara Ferrario; Marta Mangifesta; Alice Viappiani; Pamela Ferretti; Valentina Gorfer; Adrian Tett; Nicola Segata; Douwe van Sinderen; Marco Ventura

ABSTRACT Passage through the birth canal and consequent exposure to the mothers microbiota is considered to represent the initiating event for microbial colonization of the gastrointestinal tract of the newborn. However, a precise evaluation of such suspected vertical microbiota transmission has yet to be performed. Here, we evaluated the microbiomes of four sample sets, each consisting of a mothers fecal and milk samples and the corresponding infants fecal sample, by means of amplicon-based profiling supported by shotgun metagenomics data for two key samples. Notably, targeted genome reconstruction from microbiome data revealed vertical transmission of a Bifidobacterium breve strain and a Bifidobacterium longum subsp. longum strain from mother to infant, a notion confirmed by strain isolation and genome sequencing. Furthermore, PCR analyses targeting unique genes from these two strains highlighted their persistence in the infant gut at 6 months. Thus, this study demonstrates the existence of specific bifidobacterial strains that are common to mother and child and thus indicative of vertical transmission and that are maintained in the infant for at least relatively short time spans.


Scientific Reports | 2016

Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study.

Christian Milani; Andrea Ticinesi; Jacoline Gerritsen; Antonio Nouvenne; Gabriele Andrea Lugli; Leonardo Mancabelli; Francesca Turroni; Sabrina Duranti; Marta Mangifesta; Alice Viappiani; Chiara Ferrario; Marcello Maggio; Fulvio Lauretani; Willem M. de Vos; Douwe van Sinderen; Tiziana Meschi; Marco Ventura

The gut microbiota composition of elderly hospitalized patients with Clostridium difficile infection (CDI) exposed to previous antibiotic treatment is still poorly investigated. The aim of this study was to compare the microbiota composition by means of 16S rRNA microbial profiling among three groups of hospitalized elderly patients (age ≥ 65) under standard diet including 25 CDI-positive (CDI group), 29 CDI-negative exposed to antibiotic treatment (AB+ group) and 30 CDI-negative subjects not on antibiotic treatment (AB− group). The functional properties of the gut microbiomes of CDI-positive vs CDI-negative subjects were also assessed by shotgun metagenomics. A significantly lower microbial diversity was detected in CDI samples, whose microbiomes clustered separately from CDI-negative specimens. CDI was associated with a significant under-representation of gut commensals with putative protective functionalities, including Bacteroides, Alistipes, Lachnospira and Barnesiella, and over-representation of opportunistic pathogens. These findings were confirmed by functional shotgun metagenomics analyses, including an in-depth profiling of the Peptostreptococcaceae family. In CDI-negative patients, antibiotic treatment was associated with significant depletion of few commensals like Alistipes, but not with a reduction in species richness. A better understanding of the correlations between CDI and the microbiota in high-risk elderly subjects may contribute to identify therapeutic targets for CDI.


The ISME Journal | 2016

Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach

Francesca Turroni; Christian Milani; Sabrina Duranti; Leonardo Mancabelli; Marta Mangifesta; Alice Viappiani; Gabriele Andrea Lugli; Chiara Ferrario; Laura Gioiosa; Alberto Ferrarini; Jia Li; Paola Palanza; Massimo Delledonne; Douwe van Sinderen; Marco Ventura

The intricacies of cooperation and competition between microorganisms are poorly investigated for particular components of the gut microbiota. In order to obtain insights into the manner by which different bifidobacterial species coexist in the mammalian gut, we investigated possible interactions between four human gut commensals, Bifidobacterium bifidum PRL2010, Bifidobacterium adolescentis 22L, Bifidobacterium breve 12L and Bifidobacterium longum subsp. infantis ATCC15697, in the intestine of conventional mice. The generated information revealed various ecological/metabolic strategies, including glycan-harvesting, glycan-breakdown and cross-feeding behavior, adopted by bifidobacteria in the highly competitive environment of the mammalian intestine. Introduction of two or multiple bifidobacterial strains caused a clear shift in the microbiota composition of the murine cecum. Whole-genome transcription profiling coupled with metagenomic analyses of single, dual or multiple associations of bifidobacterial strains revealed an expansion of the murine gut glycobiome toward enzymatic degradation of plant-derived carbohydrates, such as xylan, arabinoxylan, starch and host-derived glycan substrates. Furthermore, these bifidobacterial communities evoked major changes in the metabolomic profile of the microbiota as observed by shifts in short chain fatty acid production and carbohydrate availability in the murine cecum. Overall, these data support an ecological role of bifidobacteria acting directly or through cross-feeding activities in shaping the gut murine microbiome to instigate an enrichment of saccharolytic microbiota.


Applied and Environmental Microbiology | 2014

Genomic Characterization and Transcriptional Studies of the Starch-Utilizing Strain Bifidobacterium adolescentis 22L

Sabrina Duranti; Francesca Turroni; Gabriele Andrea Lugli; Christian Milani; Alice Viappiani; Marta Mangifesta; Laura Gioiosa; Paola Palanza; Douwe van Sinderen; Marco Ventura

ABSTRACT Bifidobacteria are members of the gut microbiota, but the genetic basis for their adaptation to the human gut is poorly understood. The analysis of the 2,203,222-bp genome of Bifidobacterium adolescentis 22L revealed a nutrient acquisition strategy that targets diet/plant-derived glycans, in particular starch and starch-like carbohydrates. Starch-like carbohydrates were shown to support the growth of B. adolescentis 22L. Transcriptome profiling of 22L cultures grown under in vitro conditions or during colonization of the murine gut by RNA sequencing and quantitative real-time PCR assays revealed the expression of a set of chromosomal loci responsible for starch metabolism as well as for pilus production. Such extracellular structures include so-called sortase-dependent and type IVb pili, which may be involved in gut colonization of 22L through adhesion to extracellular matrix proteins.


Environmental Microbiology | 2015

Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum

Sabrina Duranti; Christian Milani; Gabriele Andrea Lugli; Francesca Turroni; Leonardo Mancabelli; Borja Sánchez; Chiara Ferrario; Alice Viappiani; Marta Mangifesta; Walter Mancino; Miguel Gueimonde; Abelardo Margolles; Douwe van Sinderen; Marco Ventura

Bifidobacteria are bacterial gut commensals of mammals, birds and social insects that are perceived to influence the metabolism/physiology of their host. In this context, members of the Bifidobacterium bifidum species are believed to significantly contribute to the overall microbiota of the human gut at infant stage. However, the molecular reasons for their adaptation to this environment are poorly understood. In this study, we analysed the pan-genome of B. bifidum species by decoding genomes of 15 B. bifidum strains, which highlighted the existence of a conserved gene uniquely present in this bifidobacterial taxon, underscoring a nutrient acquisition strategy that targets host-derived glycans, such as those present in mucin. Growth experiments and corresponding transcriptomic analyses confirmed the in silico data and supported these intriguing and unique host glycan-specific saccharolytic features. The ubiquity of the genetic features of B. bifidum for the breakdown of host glycans was confirmed by interrogating metagenomic datasets, thereby supporting the notion that metabolic access to host-derived glycans is a potent evolutionary force that has shaped B. bifidum genomes and consequently the ecology of the infant intestinal microbiota.


FEMS Microbiology Ecology | 2014

Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol

Christian Milani; Gabriele Andrea Lugli; Francesca Turroni; Leonardo Mancabelli; Sabrina Duranti; Alice Viappiani; Marta Mangifesta; Nicola Segata; Douwe van Sinderen; Marco Ventura

The precise appraisal of the composition of the human gut microbiota still represents a challenging task. The advent of next generation sequencing approaches has opened new ways to dissect the microbial biodiversity of this ecosystem through the use of 16S rRNA gene-based microbiota analysis approaches. However, the detailed representation of specific groups or members of the human gut microbiota, for example Bifidobacteria, may be skewed by the PCR primers employed in the amplification step of the 16S rRNA gene-based microbial profiling pipeline and by the limited resolution of the 16S rRNA gene variable regions. Here, we define the internal transcribed spacer (ITS) sequences of all currently known Bifidobacterium taxa, providing a Bifidobacterium-specific primer pair that targets a hypervariable region within the ITS suitable for precise taxonomic identification of all 48 so far recognized members of the Bifidobacterium genus. In addition, we present an optimized protocol for ITS-based profiling utilizing qiime software, allowing accurate and subspecies-specific compositional reconstruction of the bifidobacterial community in the human gut.

Collaboration


Dive into the Marta Mangifesta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge