Christian Mosimann
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Mosimann.
Nature Reviews Molecular Cell Biology | 2009
Christian Mosimann; George Hausmann; Konrad Basler
The canonical Wnt pathway has gathered much attention in recent years owing to its fundamental contribution to metazoan development, tissue homeostasis and human malignancies. Wnt target gene transcription is regulated by nuclear β-catenin, and genetic assays have revealed various collaborating protein cofactors. Their daunting number and diverse nature, however, make it difficult to arrange an orderly picture of the nuclear Wnt transduction events. Yet, these findings emphasize that β-catenin-mediated transcription affects chromatin. How does β-catenin cope with chromatin regulation to turn on Wnt target genes?
Cell | 2006
Christian Mosimann; George Hausmann; Konrad Basler
The Wnt pathway controls cell fates, tissue homeostasis, and cancer. Its activation entails the association of beta-catenin with nuclear TCF/LEF proteins and results in transcriptional activation of target genes. The mechanism by which nuclear beta-catenin controls transcription is largely unknown. Here we genetically identify a novel Wnt/Wg pathway component that mediates the transcriptional outputs of beta-catenin/Armadillo. We show that Drosophila Hyrax and its human ortholog, Parafibromin, components of the Polymerase-Associated Factor 1 (PAF1) complex, are required for nuclear transduction of the Wnt/Wg signal and bind directly to the C-terminal region of beta-catenin/Armadillo. Moreover, we find that the transactivation potential of Parafibromin/Hyrax depends on the recruitment of Pygopus to beta-catenin/Armadillo. Our results assign to the tumor suppressor Parafibromin an unexpected role in Wnt signaling and provide a molecular mechanism for Wnt target gene control, in which the nuclear Wnt signaling complex directly engages the PAF1 complex, thereby controlling transcriptional initiation and elongation by RNA Polymerase II.
Cell | 2011
Eirini Trompouki; Teresa V. Bowman; Lee N. Lawton; Zi Peng Fan; Dai-Chen Wu; Anthony DiBiase; Corey S. Martin; Jennifer N. Cech; Anna Sessa; Jocelyn LeBlanc; Pulin Li; Ellen M. Durand; Christian Mosimann; Garrett C. Heffner; George Q. Daley; Robert F. Paulson; Richard A. Young; Leonard I. Zon
BMP and Wnt signaling pathways control essential cellular responses through activation of the transcription factors SMAD (BMP) and TCF (Wnt). Here, we show that regeneration of hematopoietic lineages following acute injury depends on the activation of each of these signaling pathways to induce expression of key blood genes. Both SMAD1 and TCF7L2 co-occupy sites with master regulators adjacent to hematopoietic genes. In addition, both SMAD1 and TCF7L2 follow the binding of the predominant lineage regulator during differentiation from multipotent hematopoietic progenitor cells to erythroid cells. Furthermore, induction of the myeloid lineage regulator C/EBPα in erythroid cells shifts binding of SMAD1 to sites newly occupied by C/EBPα, whereas expression of the erythroid regulator GATA1 directs SMAD1 loss on nonerythroid targets. We conclude that the regenerative response mediated by BMP and Wnt signaling pathways is coupled with the lineage master regulators to control the gene programs defining cellular identity.
Development | 2011
Christian Mosimann; Charles K. Kaufman; Pulin Li; Emily Pugach; Owen J. Tamplin; Leonard I. Zon
Molecular genetics approaches in zebrafish research are hampered by the lack of a ubiquitous transgene driver element that is active at all developmental stages. Here, we report the isolation and characterization of the zebrafish ubiquitin (ubi) promoter, which drives constitutive transgene expression during all developmental stages and analyzed adult organs. Notably, ubi expresses in all blood cell lineages, and we demonstrate the application of ubi-driven fluorophore transgenics in hematopoietic transplantation experiments to assess true multilineage potential of engrafted cells. We further generated transgenic zebrafish that express ubiquitous 4-hydroxytamoxifen-controlled Cre recombinase activity from a ubi:creERt2 transgene, as well as ubi:loxP-EGFP-loxP-mCherry (ubi:Switch) transgenics and show their use as a constitutive fluorescent lineage tracing reagent. The ubi promoter and the transgenic lines presented here thus provide a broad resource and important advancement for transgenic applications in zebrafish.
Nature | 2011
Yong Zhou; Timothy J. Cashman; Kathleen R. Nevis; Pablo Obregon; Sara A. Carney; Yan Liu; Aihua Gu; Christian Mosimann; Samuel Sondalle; Richard E. Peterson; Warren Heideman; Caroline E. Burns; C. Geoffrey Burns
The four-chambered mammalian heart develops from two fields of cardiac progenitor cells distinguished by their spatiotemporal patterns of differentiation and contributions to the definitive heart. The first heart field differentiates earlier in lateral plate mesoderm, generates the linear heart tube and ultimately gives rise to the left ventricle. The second heart field (SHF) differentiates later in pharyngeal mesoderm, elongates the heart tube, and gives rise to the outflow tract and much of the right ventricle. Because hearts in lower vertebrates contain a rudimentary outflow tract but not a right ventricle, the existence and function of SHF-like cells in these species has remained a topic of speculation. Here we provide direct evidence from Cre/Lox-mediated lineage tracing and loss-of-function studies in zebrafish, a lower vertebrate with a single ventricle, that latent TGF-β binding protein 3 (ltbp3) transcripts mark a field of cardiac progenitor cells with defining characteristics of the anterior SHF in mammals. Specifically, ltbp3+ cells differentiate in pharyngeal mesoderm after formation of the heart tube, elongate the heart tube at the outflow pole, and give rise to three cardiovascular lineages in the outflow tract and myocardium in the distal ventricle. In addition to expressing Ltbp3, a protein that regulates the bioavailability of TGF-β ligands, zebrafish SHF cells co-express nkx2.5, an evolutionarily conserved marker of cardiac progenitor cells in both fields. Embryos devoid of ltbp3 lack the same cardiac structures derived from ltbp3+ cells due to compromised progenitor proliferation. Furthermore, small-molecule inhibition of TGF-β signalling phenocopies the ltbp3-morphant phenotype whereas expression of a constitutively active TGF-β type I receptor rescues it. Taken together, our findings uncover a requirement for ltbp3–TGF-β signalling during zebrafish SHF development, a process that serves to enlarge the single ventricular chamber in this species.
PLOS Biology | 2009
Sandra Goetze; Ermir Qeli; Christian Mosimann; An Staes; Bertran Gerrits; Bernd Roschitzki; Sonali Mohanty; Eva Niederer; Endre Laczko; Evy Timmerman; Vinzenz Lange; Ernst Hafen; Ruedi Aebersold; Joël Vandekerckhove; Konrad Basler; Christian H. Ahrens; Kris Gevaert; Erich Brunner
A new study reveals a functional rule for N-terminal acetylation in higher eukaryotes called the (X)PX rule and describes a generic method that prevents this modification to allow the study of N-terminal acetylation in any given protein.
Science | 2016
Charles K. Kaufman; Christian Mosimann; Zi Peng Fan; Song Yang; Andrew J. Thomas; Julien Ablain; Justin L. Tan; Rachel Fogley; Ellen van Rooijen; Elliott J. Hagedorn; Christie Ciarlo; Richard M. White; Dominick Matos; Ann-Christin Puller; Cristina Santoriello; Eric C. Liao; Richard A. Young; Leonard I. Zon
Visualizing the beginnings of melanoma In cancer biology, a tumor begins from a single cell within a group of precancerous cells that share genetic mutations. Kaufman et al. used a zebrafish melanoma model to visualize cancer initiation (see the Perspective by Boumahdi and Blanpain). They used a fluorescent reporter that specifically lit up neural crest progenitors that are only present during embryogenesis or during adult melanoma tumor formation. The appearance of this tumor correlated with a set of gene regulatory elements, called super-enhancers, whose identification and manipulation may prove beneficial in detecting and preventing melanoma initiation. Science, this issue p. 10.1126/science.aad2197; see also p. 453 Melanocytes with oncogenic or tumor suppressor mutations revert to expressing the crestin gene early in melanoma formation. [Also see Perspective by Boumahdi and Blanpain] INTRODUCTION The “cancerized field” concept posits that cells in a given tissue sharing an oncogenic mutation are cancer-prone, yet only discreet clones within the field initiate tumors. Studying the process of cancer initiation has remained challenging because of (i) the rarity of these events, (ii) the difficulty of visiualizing initiating clones in living organisms, and (iii) the transient nature of a newly transformed clone emerging before it expands to form an early tumor. A more complete understanding of the molecular processes that regulate cancer initiation could provide important prognostic information about which precancerous lesions are most prone to becoming cancer and also implicate druggable molecular pathways that, when inhibited, may prevent the cancer from ever starting. RATIONALE The majority of benign nevi carry oncogenic BRAFV600E mutations and can be considered a cancerized field of melanocytes, but they only rarely convert to melanoma. In an effort to define events that initiate cancer, we used a melanoma model in the zebrafish in which the human BRAFV600E oncogene is driven by the melanocyte-specific mitfa promoter. When bred into a p53 mutant background, these fish develop melanoma tumors over the course of many months. The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCPs) and is specifically reexpressed only in melanoma tumors, making it an ideal candidate for tracking melanoma from initiation onward. RESULTS We developed a crestin:EGFP reporter that recapitulates the embryonic neural crest expression pattern of crestin and its expression in melanoma tumors. We show through live imaging of transgenic zebrafish crestin reporters that within a cancerized field (BRAFV600E-mutant; p53-deficient), a single melanocyte reactivates the NCP state, and this establishes that a fate change occurs at melanoma initiation in this model. Early crestin+ patches of cells expand and are transplantable in a manner consistent with their possessing tumorigenic activity, and they exhibit a gene expression pattern consistent with the NCP identity readout by the crestin reporter. The crestin element is regulated by NCP transcription factors, including sox10. Forced sox10 overexpression in melanocytes accelerated melanoma formation, whereas CRISPR/Cas9 targeting of sox10 delayed melanoma onset. We show activation of super-enhancers at NCP genes in both zebrafish and human melanomas, identifying an epigenetic mechanism for control of this NCP signature leading to melanoma. CONCLUSION This work using our zebrafish melanoma model and in vivo reporter of NCP identity allows us to see cancer from its birth as a single cell and shows the importance of NCP-state reemergence as a key event in melanoma initiation from a field of cancer-prone melanocytes. Thus, in addition to the typical fixed genetic alterations in oncogenes and tumor supressors that are required for cancer development, the reemergence of progenitor identity may be an additional rate-limiting step in the formation of melanoma. Preventing NCP reemergence in a field of cancer-prone melanocytes may thus prove therapeutically useful, and the association of NCP genes with super-enhancer regulatory elements implicates the associated druggable epigenetic machinery in this process. Neural crest reporter expression in melanoma. The crestin:EGFP transgene is specifically expressed in melanoma in BRAFV600E/p53 mutant melanoma-prone zebrafish. (Top) A single cell expressing crestin:EGFP expands into a small patch of cells over the course of 2 weeks, capturing the initiation of melanoma formation (bracket). (Bottom) A fully formed melanoma specifically expresses crestin:EGFP, whereas the rest of the fish remains EGFP-negative. The “cancerized field” concept posits that cancer-prone cells in a given tissue share an oncogenic mutation, but only discreet clones within the field initiate tumors. Most benign nevi carry oncogenic BRAFV600E mutations but rarely become melanoma. The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCPs) and specifically reexpressed in melanoma. Live imaging of transgenic zebrafish crestin reporters shows that within a cancerized field (BRAFV600E-mutant; p53-deficient), a single melanocyte reactivates the NCP state, revealing a fate change at melanoma initiation in this model. NCP transcription factors, including sox10, regulate crestin expression. Forced sox10 overexpression in melanocytes accelerated melanoma formation, which is consistent with activation of NCP genes and super-enhancers leading to melanoma. Our work highlights NCP state reemergence as a key event in melanoma initiation.
Development | 2016
Alexa Burger; Helen Lindsay; Anastasia Felker; Christopher Hess; Carolin Anders; Elena Chiavacci; Jonas Zaugg; Lukas M. Weber; Raúl Catena; Martin Jinek; Mark D. Robinson; Christian Mosimann
CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. Summary: Maximal mutagenesis efficiency is achieved in vivo in zebrafish embryos using salt-solubilized, fluorescently labelled Cas9-sgRNA complexes.
Mechanisms of Development | 2009
Christian Mosimann; George Hausmann; Konrad Basler
The Hedgehog (Hh) pathway, an evolutionarily conserved key regulator of embryonic patterning and tissue homeostasis, controls its target genes by managing the processing and activities of the Gli/Ci transcription factors. Little is known about the nuclear co-factors the Gli/Ci proteins recruit, and how they mechanistically control Hh target genes. Here, we provide evidence for the involvement of Parafibromin/Hyx as a positive component in Hh signaling. We found that hyx RNAi impaired Hh pathway activity in Drosophila cell culture. Consistent with an evolutionarily conserved function in Hh signaling, RNAi-mediated knockdown of Parafibromin in mammalian cell culture experiments diminished the transcriptional activity of Gli1 and Gli2. In vivo, in Drosophila, genetic impairment of hyx decreased the expression of the high-threshold Hh target gene knot/collier. Conversely, hyx overexpression ameliorated the inhibitory activity of Ptc and Ci(75) misexpression during Drosophila wing development. We subsequently found that Parafibromin can form a complex with all three Glis, and provide evidence that Parafibromin/Hyx directly binds Region 1, the Su(fu) interaction domain, in the N-terminus of all Glis and Ci. Taken together, our results suggest a target gene-selective involvement of the PAF1 complex in Hh signaling via the Parafibromin/Hyx-mediated recruitment to Gli/Ci.
Development | 2015
Emerald Butko; Martin Distel; Claire Pouget; Bart Weijts; Isao Kobayashi; Kevin Ng; Christian Mosimann; Fabienne E. Poulain; Adam D. McPherson; Chih-Wen Ni; David L. Stachura; Natasha Del Cid; Raquel Espín-Palazón; Nathan D. Lawson; Richard I. Dorsky; Wilson Clements; David Traver
The adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-to-hematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium. Studies in mice have suggested that GATA2 might function at early stages within hemogenic endothelium. Two orthologs of Gata2 exist in zebrafish: gata2a and gata2b. Here, we report that gata2b expression initiates during the convergence of PLM, becoming restricted to emerging HSCs. We observe Notch-dependent gata2b expression within the hemogenic subcompartment of the dorsal aorta that is in turn required to initiate runx1 expression. Our results indicate that Gata2b functions within hemogenic endothelium from an early stage, whereas Gata2a functions more broadly throughout the vascular system. Highlighted article: Gata2b marks a distinct population of embryonic endothelial cells that gives rise to hematopoietic stem cells and is required for the hemogenic potential of these cells.