Christian N. Paxton
ARUP Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian N. Paxton.
Gene Expression Patterns | 2010
Christian N. Paxton; Steven B. Bleyl; Susan C. Chapman; Gary C. Schoenwolf
To understand the etiology of congenital hearing loss, a comprehensive understanding of the molecular genetic mechanisms underlying normal ear development is required. We are identifying genes involved in otogenesis, with the longer term goal of studying their mechanisms of action, leading to inner ear induction and patterning. Using Agilent microarrays, we compared the differential expression of a test domain (which consisted of the pre-otic placodal ectoderm with the adjacent hindbrain ectoderm and the underlying mesendodermal tissues) with a rostral control domain (which included tissue that is competent, but not specified, to express inner ear markers in explant assays). We identified 1261 transcripts differentially expressed between the two domains at a 2-fold or greater change: 463 were upregulated and 798 were downregulated in the test domain. We validated the differential expression of several signaling molecules and transcription factors identified in this array using in situ hybridization. Furthermore, the expression patterns of the validated group of genes from the test domain were explored in detail to determine how the timing of their expression relates to specific events of otic induction and development. In conclusion, we identified a number of novel candidate genes for otic placode induction.
Ultrasound in Obstetrics & Gynecology | 2015
Stephanie Romero; K. B. Geiersbach; Christian N. Paxton; N. C. Rose; Enrique F. Schisterman; D. W. Branch; Robert M. Silver
To characterize the types of genetic abnormalities and their prevalence in early pregnancy loss at different developmental stages. We hypothesized that the prevalence of genetic abnormalities in pregnancy loss would differ across developmental stages.
Cancer Genetics and Cytogenetics | 2011
Katherine B. Geiersbach; Elke A. Jarboe; Mona S. Jahromi; Christine L. Baker; Christian N. Paxton; Sheryl R. Tripp; Joshua D. Schiffman
Adult granulosa cell tumors (AGCTs) are a rare class of ovarian tumors with recurrent cytogenetic abnormalities including trisomy 12, trisomy 14, monosomy 16/deletion 16q, and monosomy 22. Over 90% contain a missense point mutation (C134W) in the FOXL2 gene at 3q22.3. The relationship between FOXL2 mutation and cytogenetic abnormalities is unclear, although both are presumably early events in tumorigenesis. In addition, FOXL2 C134W mutant allele imbalance has been noted in a minority of AGCTs, but the mechanism for allelic imbalance has not yet been described. We used a microarray platform designed for formalin-fixed, paraffin-embedded (FFPE) tissue specimens, the Affymetrix OncoScan FFPE Express 330K Molecular Inversion Probe (MIP) array, to explore the correlation between genomic imbalances detected by microarray and FOXL2 mutation status detected by pyrosequencing in a series of 21 archived AGCTs. Tumors were characterized by histopathologic features, stage, and alpha-inhibin expression by immunohistochemistry. All tumors were positive for inhibin, and 18/21 tumors contained a FOXL2 mutation. The most common genomic imbalances were a gain of 14q, a loss of 16q, and a loss of 22q. Three tumors showed evidence of FOXL2 mutant allele imbalance by pyrosequencing; microarray revealed a 32.5 Mb deletion encompassing FOXL2 in 1 case and a 70.9 Mb stretch of homozygosity encompassing FOXL2 in the other case. The third case, with a FOXL2 mutant allele imbalance, showed a diminished mutant allele population (32%) despite high estimated tumor content (>90%), suggesting tumor heterogeneity for the mutation. This study provides the first correlation of FOXL2 mutation status and genomic imbalances in AGCTs, and it further elucidates the mechanisms for mutant allele imbalance in cancer.
Archives of Pathology & Laboratory Medicine | 2013
Larissa V. Furtado; Christian N. Paxton; Mohamed Jama; Sheryl R. Tripp; Andrew Wilson; Elaine Lyon; Elke A. Jarboe; Harshwardhan M. Thaker; Katherine B. Geiersbach
CONTEXT Molecular genotyping by analysis of DNA microsatellites, also known as short tandem repeats (STRs), is an established method for diagnosing and classifying hydatidiform mole. Distinction of both complete hydatidiform mole and partial hydatidiform mole from nonmolar specimens is relevant for clinical management owing to differences in risk for persistent gestational trophoblastic disease. OBJECTIVE To determine the technical performance of microsatellite genotyping by using a commercially available multiplex assay, and to describe the application of additional methods to confirm other genetic abnormalities detected by the genotyping assay. DESIGN Microsatellite genotyping data on 102 cases referred for molar pregnancy testing are presented. A separate panel of mini STR markers, flow cytometry, fluorescence in situ hybridization, and p57 immunohistochemistry were used to characterize cases with other incidental genetic abnormalities. RESULTS Forty-eight cases were classified as hydatidiform mole (31, complete hydatidiform mole; 17, partial hydatidiform mole). Genotyping also revealed 11 cases of suspected trisomy and 1 case of androgenetic/biparental mosaicism. Trisomy for selected chromosomes (13, 16, 18, and 21) was confirmed in all cases by using a panel of mini STR markers. CONCLUSIONS This series illustrates the utility of microsatellite genotyping as a stand-alone method for accurate classification of hydatidiform mole. Other genetic abnormalities may be detected by genotyping; confirmation of the suspected abnormality requires additional testing.
Clinical Chemistry | 2015
Luming Zhou; Robert Palais; Christian N. Paxton; Katherine B. Geiersbach; Carl T. Wittwer
BACKGROUND DNA copy number variation is associated with genetic disorders and cancer. Available methods to discern variation in copy number are typically costly, slow, require specialized equipment, and/or lack precision. METHODS Multiplex PCR with different primer pairs and limiting deoxynucleotide triphosphates (dNTPs) (3-12 μmol/L) were used for relative quantification and copy number assessment. Small PCR products (50-121 bp) were designed with 1 melting domain, well-separated Tms, minimal internal sequence variation, and no common homologs. PCR products were displayed as melting curves on derivative plots and normalized to the reference peak. Different copy numbers of each target clustered together and were grouped by unbiased hierarchical clustering. RESULTS Duplex PCR of a reference gene and a target gene was used to detect copy number variation in chromosomes X, Y, 13, 18, 21, epidermal growth factor receptor (EGFR), survival of motor neuron 1, telomeric (SMN1), and survival of motor neuron 2, centromeric (SMN2). Triplex PCR was used for X and Y and CFTR exons 2 and 3. Blinded studies of 50 potential trisomic samples (13, 18, 21, or normal) and 50 samples with potential sex chromosome abnormalities were concordant to karyotyping, except for 2 samples that were originally mosaics that displayed a single karyotype after growth. Large cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7) (CFTR) deletions, EGFR amplifications, and SMN1 and SMN2 copy number assessments were also demonstrated. Under ideal conditions, copy number changes of 1.11-fold or lower could be discerned with CVs of about 1%. CONCLUSIONS Relative quantification by restricting the dNTP concentration with melting curve display is a simple and precise way to assess targeted copy number variation.
Prenatal Diagnosis | 2013
Christian N. Paxton; Arthur R. Brothman; Katherine B. Geiersbach
Chromosome analysis is the traditional method for detecting genetic abnormalities in products of conception, but it is prone to a high failure rate because of the requirement for cell culture. Molecular genetic tests do not require cell culture, but are either more expensive (e.g. chromosomal microarray) or less sensitive than chromosome analysis (e.g. fluorescence in situ hybridization, multiplex ligation mediated amplification). The KaryoLite™ BACs‐on‐Beads™ (KL‐BoBs™) assay is highly multiplexed with low resolution coverage and is designed to detect aneusomy for any chromosome.
Oncotarget | 2017
Jamie D. Gardiner; Lisa M. Abegglen; Xiaomeng Huang; Bryce E. Carter; Elizabeth A. Schackmann; Marcus Stucki; Christian N. Paxton; R. Lor Randall; James F. Amatruda; Angelica R. Putnam; Heinrich Kovar; Stephen L. Lessnick; Joshua D. Schiffman
CEBPB copy number gain in Ewing sarcoma was previously shown to be associated with worse clinical outcome compared to tumors with normal CEBPB copy number, although the mechanism was not characterized. We employed gene knockdown and rescue assays to explore the consequences of altered CEBPB gene expression in Ewing sarcoma cell lines. Knockdown of EWS-FLI1 expression led to a decrease in expression of all three C/EBPβ isoforms while re-expression of EWS-FLI1 rescued C/EBPβ expression. Overexpression of C/EBPβ-1, the largest of the three C/EBPβ isoforms, led to a significant increase in colony formation when cells were grown in soft agar compared to empty vector transduced cells. In addition, depletion of C/EBPβ decreased colony formation, and re-expression of either C/EBPβ-1 or C/EBPβ-2 rescued the phenotype. We identified the cancer stem cell marker ALDH1A1 as a target of C/EBPβ in Ewing sarcoma. Furthermore, increased expression of C/EBPβ led to resistance to chemotherapeutic agents. In summary, we have identified CEBPB as an oncogene in Ewing sarcoma. Overexpression of C/EBPβ-1 increases transformation, upregulates expression of the cancer stem cell marker ALDH1A1, and leads to chemoresistance.
Molecular Cytogenetics | 2015
Christian N. Paxton; Leslie R. Rowe; Sarah T. South
BackgroundWith recent advancements in molecular techniques, the opportunities to gather whole genome information have increased, even in degraded samples such as FFPE tissues. As a result, a broader view of the genomic landscape of solid tumors may be explored. Whole genome copy number and loss of heterozygosity patterns can advance our understanding of mechanisms and complexity of various tumors.ResultsGenome-wide alterations involving copy number changes and loss of heterozygosity were identified in 17 glioma samples with positive FISH results for 1p19q co-deletions (n = 9) or EGFR amplification (n = 8). Gliomas positive for 1p19q co-deletions did not have other frequently recurrent genomic alterations. Additional copy-number alterations were observed in individual cases, and consisted primarily of large-scale changes, including gains or losses of entire chromosomes. The genomic architecture of EGFR amplified gliomas was much more complex, with a high number of gains and losses across the genome. Recurrent alterations in EGFR amplified gliomas were both focal, such as CDKN2A homozygous deletions, and large, such as chromosome 10 loss.ConclusionsMicroarray enabled a broader picture of the genomic alterations occurring in glioma cases. Gliomas with 1p19q co-deletion had a relatively quiet genome, apart from the selected co-deletion. Additional alterations in isolated cases, involved primarily larger aberrations. On the other hand, EGFR amplified cases tended to be more complex and have specific abnormalities associated with the EGFR amplification. Furthermore, 1p19q co-deletions and EGFR amplification associated copy number changes appeared to often be mutually exclusive.
Leukemia Research | 2017
Shiven B. Patel; Clinton C. Mason; Martha Glenn; Christian N. Paxton; Sara T. South; Melissa H. Cessna; Julie Asch; Erin F. Cobain; Dale Bixby; Lauren B. Smith; Shalini C. Reshmi; Julie M. Gastier-Foster; Joshua D. Schiffman; Rodney R. Miles
B lymphoblastic leukemia (B-ALL) in adults has a higher risk of relapse and lower long-term survival than pediatric B-ALL, but data regarding genetic prognostic biomarkers are much more limited for adult patients. We identified 70 adult B-ALL patients from three institutions and performed genome-wide analysis via single nucleotide polymorphism (SNP) arrays on DNA isolated from their initial diagnostic sample and, when available, relapse bone marrow specimens to identify recurring copy number alterations (CNA). As B-cell developmental genes play a crucial role in this leukemia, we assessed such for recurrent deletions in diagnostic and relapse samples. We confirmed previous findings that the most prevalent deletions of these genes occur in CDKN2A, IKZF1, and PAX5, with several others at lower frequencies. Of the 16 samples having paired diagnostic and relapse samples, 5 showed new deletions in these recurrent B-cell related genes and 8 showed abolishment. Deletion of EBF1 heralded a significant negative prognostic impact on relapse free survival in univariate and multivariate analyses. The combination of both a CDKN2A/B deletion and an IKZF1 alteration (26% of cases) also showed a trend toward predicting worse overall survival compared to having only one or neither of these deletions. These findings add to the understanding of genomic influences on this comparably understudied disease cohort that upon further validation may help identify patients who would benefit from upfront treatment intensification.
Pediatric Blood & Cancer | 2016
Jessica Meznarich; Rodney R. Miles; Christian N. Paxton; Zeinab Afify
Burkitt lymphoma (BL) and B‐lymphoblastic lymphoma are subtypes of pediatric non‐Hodgkin lymphoma with different presenting features, treatment, and outcomes. This case report documents a 5‐year‐old female who presented with B‐cell lymphoma with lymphoblastic morphology, terminal deoxynucleotidyl transferase expression, MYC rearrangement, and features overlapping with BL. Genomic microarray analysis identified a gain on the long arm of chromosome 1 without other definitive changes. She was treated according to a BL protocol and remains in remission 16‐months after initial diagnosis.