Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian P. Giardina is active.

Publication


Featured researches published by Christian P. Giardina.


Nature | 2000

Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature.

Christian P. Giardina; Michael G. Ryan

It has been suggested that increases in temperature can accelerate the decomposition of organic carbon contained in forest mineral soil (Cs ), and, therefore, that global warming should increase the release of soil organic carbon to the atmosphere. These predictions assume, however, that decay constants can be accurately derived from short-term laboratory incubations of soil or that in situ incubations of fresh litter accurately represent the temperature sensitivity of C s decomposition. But our limited understanding of the biophysical factors that control Cs decomposition rates, and observations of only minor increases in Cs decomposition rate with temperature in longer-term forest soil heating experiments and in latitudinal comparisons of Cs decomposition rates bring these predictions into question. Here we have compiled Cs decomposition data from 82 sites on five continents. We found that Cs decomposition rates were remarkably constant across a global-scale gradient in mean annual temperature. These data suggest that Cs decomposition rates for forest soils are not controlled by temperature limitations to microbial activity, andxa0that increased temperature alone will not stimulate the decomposition of forest-derived carbon in mineral soil.


Ecological Monographs | 2004

AN EXPERIMENTAL TEST OF THE CAUSES OF FOREST GROWTH DECLINE WITH STAND AGE

Michael G. Ryan; Dan Binkley; James H. Fownes; Christian P. Giardina; Randy S. Senock

The decline in aboveground wood production after canopy closure in even-aged forest stands is a common pattern in forests, but clear evidence for the mechanism causing the decline is lacking. The problem is fundamental to forest biology, commercial forestry (the decline sets the rotation age), and to carbon storage in forests. We tested three hypotheses about mechanisms causing the decline in wood growth by quantifying the complete carbon budget of developing stands for over six years (a full rotation) in replicated plantations of Eucalyptus saligna near Pepeekeo, Hawaii. Our first hypothesis was that gross primary production (GPP) does not decline with stand age, and that the decline in wood growth results from a shifft in partitioning from wood production to respiration (as tree biomass accumulates), total belowground carbon allocation (as a result of declining soil nutrient supply), or some combination of these or other sinks. An alternative hypothesis was that GPP declines with stand age and that the decline in aboveground wood production is proportional to the decline in GPP. A decline in GPP could be driven be reduced canopy leaf area and photosynthetic capacity resulting from increasing nutrient limitation, increased abrasion between tree canopies, lower turgor pressure to drive foliar expansion, or hydraulic limitation of water flux as tree height increases. A final hypothesis was a combination of the first two: GPP declines, but the decline in wood production is disproportionately larger because partitioning shifts as well. We measured the entire annual carbon budget (aboveground production and respiration, total belowground carbon allocation [TBCA], and GPP) from 0.5 years after seedling planting through 6 1/2 years (when trees were ~25m tall). The replicated plots included two densities of trees (1111 trees/ha and 10 000 trees/ha) to vary the ratio of canopy leaf mass to wood mass in the individual trees, and three fertilization regimes (minimal, intensive, and minimal followed by intensive after three years) to assess the role of nutrition in shaping the decline in GPP and aboveground wood production. The forest closed its canopy in 1-2 years, with peak aboveground wood production, coinciding with canopy closure, of 1.2-1.8 kg C.m-2yr-1. Aboveground wood production declined from 1.4 kg C.m-2yr-1 at age 2 to 0.60 kg C.m-2yr-1 at age 6. Hypothesis 1 failed: GPP declined from 5.0 kg C.m-2yr-1 at age 2 to 3.2 kg C.m-2yr-1 at age 6. Aboveground woody respiration declined from 0.66 kg C.m-2yr-1 at age 2 to 0.22 kg C.m-2yr-1 at age 6 and TBCA declined from 1.9 kg C.m-2yr-1 at age 2 to 1.4 kg C.m-2yr-1 at age 6. Our data supported hypothesis 3: the decline in aboveground wood production (42% of peak) was proportionally greater than the decline in canopy photosynthesis (64% of peak). The fraction of GPP partitioned to belowground allocation and foliar respiration increased with stand age and contributed to the decline in aboveground wood production. The decline in GPP was not caused by nutrient limitation, a decline in leaf area or in photsynthetic capacity, or (from a related study on the same site) by hydraulic limitation. Nutrition did interact with the decline in GPP and aboveground wood production, because treatments with high nutritient availablity declined more slowly than did our control treatment, which was fertilized only during stand establishment.


Ecosystems | 2002

Total Belowground Carbon Allocation in a Fast-growing Eucalyptus Plantation Estimated Using a Carbon Balance Approach

Christian P. Giardina; Michael G. Ryan

Trees allocate a large portion of gross primary production belowground for the production and maintenance of roots and mycorrhizae. The difficulty of directly measuring total belowground carbon allocation (TBCA) has limited our understanding of belowground carbon (C) cycling and the factors that control this important flux. We measured TBCA over 4 years using a conservation of mass, C balance approach in replicate stands of fast growing Eucalyptus saligna Smith with different nutrition management and tree density treatments. We measured TBCA as surface carbon dioxide (CO2) efflux (“soil” respiration) minus C inputs from aboveground litter plus the change in C stored in roots, litter, and soil. We evaluated this C balance approach to measuring TBCA by examining (a) the variance in TBCA across replicate plots; (b) cumulative error associated with summing components to arrive at our estimates of TBCA; (c) potential sources of error in the techniques and assumptions; (d) the magnitude of changes in C stored in soil, litter, and roots compared to TBCA; and (e) the sensitivity of our measures of TBCA to differences in nutrient availability, tree density, and forest age. The C balance method gave precise estimates of TBCA and reflected differences in belowground allocation expected with manipulations of fertility and tree density. Across treatments, TBCA averaged 1.88 kg C m−2 y−1 and was 18% higher in plots planted with 104 trees/ha compared to plots planted with 1111 trees/ha. TBCA was 12% lower (but not significantly so) in fertilized plots. For all treatments, TBCA declined linearly with stand age. The coefficient of variation (CV) for TBCA for replicate plots averaged 17%. Averaged across treatments and years, annual changes in C stored in soil, the litter layer, and coarse roots (−0.01, 0.06, and 0.21 kg C m−2 y−1, respectively) were small compared with surface CO2 efflux (2.03 kg C m−2 y−1), aboveground litterfall (0.42 kg C m−2 y−1), and our estimated TBCA (1.88 kg C m−2 y−1). Based on studies from similar sites, estimates of losses of C through leaching, erosion, or storage of C in deep soil were less than 1% of annual TBCA.


Oecologia | 2004

Belowground carbon cycling in a humid tropical forest decreases with fertilization

Christian P. Giardina; Dan Binkley; Michael G. Ryan; James H. Fownes; Randy S. Senock

Only a small fraction of the carbon (C) allocated belowground by trees is retained by soils in long-lived, decay-resistant forms, yet because of the large magnitude of terrestrial primary productivity, even small changes in C allocation or retention can alter terrestrial C storage. The humid tropics exert a disproportionately large influence over terrestrial C storage, but C allocation and belowground retention in these ecosystems remain poorly quantified. Using mass balance and 13C isotope methods, we examined the effects of afforestation and fertilization, two land-use changes of large-scale importance, on belowground C cycling at a humid tropical site in Hawaii. Here we report that in unfertilized plots, 80% of the C allocated belowground by trees to roots and mycorrhizae was returned to the atmosphere within 1xa0year; 9% of the belowground C flux was retained in coarse roots and 11% was retained as new soil C. The gains in new soil C were offset entirely by losses of old soil C. Further, while fertilization early in stand development increased C storage in the litter layer and in coarse roots, it reduced by 22% the flux of C moving through roots and mycorrhizae into mineral soils. Because soil C formation rates related strongly to rhizosphere C flux, fertilization may reduce an already limited capacity of these forests to sequester decay-resistant soil C.


Giardina, C.P.; Coleman, M.D.; Hancock, J.E.; [and others] 2005. The response of belowground carbon allocation in forest global change. In: Binkley, D.; Menyailo, O. eds. Tree species effects on soils: Implications for global change. Netherlands: Kluwer Academic Publishers. 119-154. Chapter 7. | 2005

The Response of Belowground Carbon Allocation in Forests to Global Change

Christian P. Giardina; Mark D. Coleman; Dan Binkley; Jessica E. Hancock; John S. King; Eric A. Lilleskov; Wendy M. Loya; Kurt S. Pregitzer; Michael G. Ryan; Carl C. Trettin

Belowground carbon allocation (BCA) in forests regulates soil organic matter formation and influences biotic and abiotic properties of soil such as bulk density, cation exchange capacity, and water holding capacity. On a global scale, the total quantity of carbon allocated belowground by terrestrial plants is enormous, exceeding by an order of magnitude the quantity of carbon emitted to the atmosphere through combustion of fossil fuels. Despite the importance of BCA to the functioning of plant and soil communities, as well as the global carbon budget, controls on BCA are relatively poorly understood. Consequently, our ability to predict how BCA will respond to changes in atmospheric greenhouse gases, climate, nutrient deposition, and plant community composition remains rudimentary. In this synthesis, we examine BCA from three perspectives: coarse-root standing stock, belowground net primary production (BNPP), and total belowground carbon allocation (TBCA). For each, we examine methodologies and methodological constraints, as well as constraints of terminology. We then examine available data for any predictable variation in BCA due to changes in species composition, mean annual temperature, or elevated CO2 in existing Free Air CO2 Exposure (FACE) experiments. Finally, we discuss what we feel are important future directions for belowground carbon allocation research, with a focus on global change issues.


Ecological Applications | 2003

DIURNAL VARIATION IN THE BASAL EMISSION RATE OF ISOPRENE

Jennifer L. Funk; Clive G. Jones; Christine J. Baker; Heather M. Fuller; Christian P. Giardina; Manuel T. Lerdau

Isoprene is emitted from numerous plant species and profoundly influences tropospheric chemistry. Due to the short lifetime of isoprene in the atmosphere, developing an understanding of emission patterns at small time scales is essential for modeling regional atmospheric chemistry processes. Previous studies suggest that diurnal fluctuations in iso- prene emission may be substantial, leading to inaccuracies in emission estimates at larger scales. We examined diurnal patterns in the basal emission rate of isoprene in red oak (Quercus rubra), eastern cottonwood (Populus deltoides), and eucalyptus (Eucalyptus sal- igna) and the influence of light and temperature on the magnitude of these diurnal patterns. Maximum diurnal increases in isoprene emission were large in cottonwood (45%) and oak (25%), with increases exceeding 100% in 1-yr-old cottonwoods. Eucalyptus showed no diurnal variation in emission. All species showed diurnal declines in photosynthesis. Across species, there was a positive correlation between maximum diurnal change in both isoprene emission and photosynthesis. The magnitude of diurnal increase in isoprene emission varied when individual cottonwoods were sampled repeatedly over three days. Temperature and light history, integrated from 1 to 48 hours prior to measurement, did not explain these variations in diurnal emission. Diurnal increases in emission were present when plants were shaded to <7% ambient light. Our results indicate that diurnal fluctuations in emission are large and species specific, and must be considered when estimating emission rates for use in short-term regional atmospheric-chemistry models.


Nature | 2000

reply: Soil warming and organic carbon content

Christian P. Giardina; Michael G. Ryan

Davidson et al. question the validity of our conclusions on the grounds that differences in disturbance, high variability among sites, and the use of a single-pool model to estimate turnover time (TT) obscured the effect of temperature on the decomposition of soil carbon.


Soil Science Society of America Journal | 2001

Tree Species and Soil Textural Controls on Carbon and Nitrogen Mineralization Rates

Christian P. Giardina; Michael G. Ryan; Robert M. Hubbard; Dan Binkley


Soil Science Society of America Journal | 2000

Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest.

Christian P. Giardina; Robert L. Sanford; Ingrid C. Døckersmith


Archive | 2009

The influence of chemistry, production and community composition under elevated atmospheric CO2 and tropospheric O3 in a northern hardwood ecosystem

Lingli Liu; John S. King; Christian P. Giardina; Fitzgerald L. Booker

Collaboration


Dive into the Christian P. Giardina's collaboration.

Top Co-Authors

Avatar

Michael G. Ryan

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James H. Fownes

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Jessica E. Hancock

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

John S. King

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Kurt S. Pregitzer

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Randy S. Senock

University of Hawaii at Hilo

View shared research outputs
Top Co-Authors

Avatar

Lingli Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl C. Trettin

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge