Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lingli Liu is active.

Publication


Featured researches published by Lingli Liu.


Ecology Letters | 2010

A global perspective on belowground carbon dynamics under nitrogen enrichment.

Lingli Liu; Tara L. Greaver

Nitrogen (N) effects on ecosystem carbon (C) budgets are critical to understand as C sequestration is considered as a mechanism to offset anthropogenic CO(2) emissions. Interactions between aboveground C and N cycling are more clearly characterized than belowground processes. Through synthesizing data from multiple terrestrial ecosystems, we quantified the responses of belowground C cycling under N addition. We found that N addition increased litter input from aboveground (+20%) but not from fine root. N addition inhibited microbial activity as indicated by a reduction in microbial respiration (-8%) and microbial biomass carbon (-20%). Although soil respiration was not altered by N addition, dissolved organic carbon concentration was increased by 18%, suggesting C leaching loss may increase. N addition increased the C content of the organic layer (+17%) but not the mineral soil layer. Overall, our meta-analysis indicates that N addition will increase short term belowground C storage by increasing C content of organic layer. However, it is difficult to predict the response of long term C sequestration since there is no significant change in mineral soil C content.


Ecology Letters | 2009

A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission

Lingli Liu; Tara L. Greaver

Anthropogenic nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application, alters biogeochemical cycling of ecosystems in a way that leads to altered flux of biogenic greenhouse gases (GHGs). Our meta-analysis of 313 observations across 109 studies evaluated the effect of N addition on the flux of three major GHGs: CO(2), CH(4) and N(2)O. The objective was to quantitatively synthesize data from agricultural and non-agricultural terrestrial ecosystems across the globe and examine whether factors, such as ecosystem type, N addition level and chemical form of N addition influence the direction and magnitude of GHG fluxes. Results indicate that N addition increased ecosystem carbon content of forests by 6%, marginally increased soil organic carbon of agricultural systems by 2%, but had no significant effect on net ecosystem CO(2) exchange for non-forest natural ecosystems. Across all ecosystems, N addition increased CH(4) emission by 97%, reduced CH(4) uptake by 38% and increased N(2)O emission by 216%. The net effect of N on the global GHG budget is calculated and this topic is reviewed. Most often N addition is considered to increase forest C sequestration without consideration of N stimulation of GHG production in other ecosystems. However, our study indicated that although N addition increased the global terrestrial C sink, the CO(2) reduction could be largely offset (53-76%) by N stimulation of global CH(4) and N(2)O emission from multiple ecosystems.


Ecological Applications | 2011

Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States

Linda H. Pardo; Mike E. Fenn; Christine L. Goodale; Linda H. Geiser; Charles T. Driscoll; Edith B. Allen; Jill S. Baron; Roland Bobbink; Williams D. Bowman; Christopher M. Clark; Bridget A. Emmett; Frank S. Gilliam; Tara L. Greaver; Sharon J. Hall; Erik A. Lilleskov; Lingli Liu; Jason A. Lynch; Knute J. Nadelhoffer; Steven S. Perakis; Molly J. Robin-Abbott; John L. Stoddard; Kathleen C. Weathers; Robin L. Dennis

Human activity in the last century has led to a significant increase in nitrogen (N) emissions and atmospheric deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the deposition of pollution that would be harmful to ecosystems is the determination of critical loads. A critical load is defined as the input of a pollutant below which no detrimental ecological effects occur over the long-term according to present knowledge. The objectives of this project were to synthesize current research relating atmospheric N deposition to effects on terrestrial and freshwater ecosystems in the United States, and to estimate associated empirical N critical loads. The receptors considered included freshwater diatoms, mycorrhizal fungi, lichens, bryophytes, herbaceous plants, shrubs, and trees. Ecosystem impacts included: (1) biogeochemical responses and (2) individual species, population, and community responses. Biogeochemical responses included increased N mineralization and nitrification (and N availability for plant and microbial uptake), increased gaseous N losses (ammonia volatilization, nitric and nitrous oxide from nitrification and denitrification), and increased N leaching. Individual species, population, and community responses included increased tissue N, physiological and nutrient imbalances, increased growth, altered root : shoot ratios, increased susceptibility to secondary stresses, altered fire regime, shifts in competitive interactions and community composition, changes in species richness and other measures of biodiversity, and increases in invasive species.


Nature Communications | 2014

Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity.

Shilong Piao; Huijuan Nan; Chris Huntingford; Philippe Ciais; Pierre Friedlingstein; Stephen Sitch; Shushi Peng; Anders Ahlström; Josep G. Canadell; Nan Cong; Sam Levis; Peter E. Levy; Lingli Liu; Mark R. Lomas; Jiafu Mao; Ranga B. Myneni; Philippe Peylin; Ben Poulter; Xiaoying Shi; Guodong Yin; Nicolas Viovy; Tao Wang; Wang X; Soenke Zaehle; Ning Zeng; Zhenzhong Zeng; Anping Chen

Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30°N, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDVI-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT is mainly observed in temperate and arctic ecosystems, and is also partly reproduced by process-based ecosystem model results. In the temperate ecosystem, the decrease in RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a nonlinear response of photosynthesis to temperature, increase of hot extreme days and shrub expansion over grass-dominated tundra. Our results caution the use of results from interannual time scales to constrain the decadal response of plants to ongoing warming.


Frontiers in Ecology and the Environment | 2012

Ecological effects of nitrogen and sulfur air pollution in the US: what do we know?

Tara L. Greaver; Timothy J. Sullivan; Jeffrey D. Herrick; Mary Barber; Jill S. Baron; B. J. Cosby; Marion E Deerhake; Robin L. Dennis; Jean-Jacques Dubois; Christine L. Goodale; Alan T. Herlihy; Gregory B. Lawrence; Lingli Liu; Jason A. Lynch; Kristopher Novak

Four decades after the passage of the US Clean Air Act, air-quality standards are set to protect ecosystems from damage caused by gas-phase nitrogen (N) and sulfur (S) compounds, but not from the deposition of these air pollutants to land and water. Here, we synthesize recent scientific literature on the ecological effects of N and S air pollution in the US. Deposition of N and S is the main driver of ecosystem acidification and contributes to nutrient enrichment in many natural systems. Although surface-water acidification has decreased in the US since 1990, it remains a problem in many regions. Perturbations to ecosystems caused by the nutrient effects of N deposition continue to emerge, although gas-phase concentrations are generally not high enough to cause phytotoxicity. In all, there is overwhelming evidence of a broad range of damaging effects to ecosystems in the US under current air-quality conditions.


Global Change Biology | 2014

Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis.

Lingyan Zhou; Xuhui Zhou; Baocheng Zhang; Meng Lu; Yiqi Luo; Lingli Liu; Bo Li

Anthropogenic activities have increased nitrogen (N) deposition by threefold to fivefold over the last century, which may considerably affect soil respiration (Rs). Although numerous individual studies and a few meta-analyses have been conducted, it remains controversial as to how N addition affects Rs and its components [i.e., autotrophic (Ra) and heterotrophic respiration (Rh)]. To reconcile the difference, we conducted a comprehensive meta-analysis of 295 published studies to examine the responses of Rs and its components to N addition in terrestrial ecosystems. We also assessed variations in their responses in relation to ecosystem types, environmental conditions, and experimental duration (DUR). Our results show that N addition significantly increased Rs by 2.0% across all biomes but decreased by 1.44% in forests and increased by 7.84% and 12.4% in grasslands and croplands, respectively (P < 0.05). The differences may largely result from diverse responses of Ra to N addition among biomes with more stimulation of Ra in croplands and grasslands compared with no significant change in forests. Rh exhibited a similar negative response to N addition among biomes except that in croplands, tropical and boreal forests. Methods of partitioning Rs did not induce significant differences in the responses of Ra or Rh to N addition, except that Ra from root exclusion and component integration methods exhibited the opposite responses in temperate forests. The response ratios (RR) of Rs to N addition were positively correlated with mean annual temperature (MAT), with being more significant when MAT was less than 15 °C, but negatively with DUR. In addition, the responses of Rs and its components to N addition largely resulted from the changes in root and microbial biomass and soil C content as indicated by correlation analysis. The response patterns of Rs to N addition as revealed in this study can be benchmarks for future modeling and experimental studies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Climate change impacts of US reactive nitrogen

Robert W. Pinder; Eric A. Davidson; Christine L. Goodale; Tara L. Greaver; Jeffrey D. Herrick; Lingli Liu

Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N2O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO2 equivalents (CO2e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at −290 to −510 Tg CO2e on a GTP20 basis. However, these effects are largely short-lived. On a GTP100 basis, combustion contributes just −16 to −95 Tg CO2e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N2O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N2O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO2 emission reductions will be required to avoid dangerous climate change.


Ecology Letters | 2016

Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle

Shuli Niu; Aimée T. Classen; Jeffrey S. Dukes; Paul Kardol; Lingli Liu; Yiqi Luo; Lindsey E. Rustad; Jian Sun; Jianwu Tang; Pamela H. Templer; R. Quinn Thomas; Dashuan Tian; Sara Vicca; Ying-Ping Wang; Jianyang Xia; Sönke Zaehle

Nitrogen (N) deposition is impacting the services that ecosystems provide to humanity. However, the mechanisms determining impacts on the N cycle are not fully understood. To explore the mechanistic underpinnings of N impacts on N cycle processes, we reviewed and synthesised recent progress in ecosystem N research through empirical studies, conceptual analysis and model simulations. Experimental and observational studies have revealed that the stimulation of plant N uptake and soil retention generally diminishes as N loading increases, while dissolved and gaseous losses of N occur at low N availability but increase exponentially and become the dominant fate of N at high loading rates. The original N saturation hypothesis emphasises sequential N saturation from plant uptake to soil retention before N losses occur. However, biogeochemical models that simulate simultaneous competition for soil N substrates by multiple processes match the observed patterns of N losses better than models based on sequential competition. To enable better prediction of terrestrial N cycle responses to N loading, we recommend that future research identifies the response functions of different N processes to substrate availability using manipulative experiments, and incorporates the measured N saturation response functions into conceptual, theoretical and quantitative analyses.


Global Change Biology | 2016

A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes

Lingli Liu; Xin Wang; Marc J. Lajeunesse; Guofang Miao; Shilong Piao; Shiqiang Wan; Yuxin Wu; Zhenghua Wang; Sen Yang; Ping Li; Meifeng Deng

Soil respiration (Rs) is the second-largest terrestrial carbon (C) flux. Although Rs has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of Rs will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis Rs data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta-analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, Rs, and the temperature sensitivity (Q10) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by -1.3%. The greatest increases in Rs and Q10 were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and Rs values decreased by an average of -14% and -17%, respectively, and the soil temperature and Q10 values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and Rs by -12% and -6%, respectively, but did not alter Q10. Overall, our synthesis suggests that soil moisture and Rs tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of Rs and Q10 were predominantly driven by precipitation-induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these findings, we urge future studies to focus on manipulating the frequency, intensity, and seasonality of precipitation with an aim to improving our ability to predict and model feedback between Rs and climate change.


Global Change Biology | 2015

The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation

Jing Wang; Lingli Liu; Xin Wang; Yiwei Chen

Elevated ultraviolet (UV) radiation has been demonstrated to stimulate litter decomposition. Despite years of research, it is still not fully understood whether the acceleration in litter degradation is primarily attributed to abiotic photodegradation or the combined effects of abiotic photodegradation and microbial decomposition. In this study, we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter decomposition between abiotic and biotic conditions. We also conducted a microcosm experiment to assess the effects of UV radiation on litter biodegradability and microbial activity. Overall, our meta-analysis found that under abiotic photodegradation, UV radiation reduced the remaining litter mass by 1.44% (95% CI: 0.85% to 2.08%), did not affect the remaining lignin and increased the dissolved organic carbon (DOC) concentration by 14.01% (1.49-23.67%). Under combined abiotic photodegradation and microbial decomposition, UV radiation reduced the remaining litter mass and lignin by 1.60% (0.04-3.58%) and 16.07% (9.27-24.23%), respectively, but did not alter DOC concentration. UV radiation had no significant impact on soil microbial biomass carbon (MBC), but it reduced microbial respiration by 44.91% (2.26-78.62%) and altered the composition of the microbial community. In addition, UV radiation reduced nitrogen (N) immobilization by 19.44% (4.77-37.92%). Our microcosm experiment further indicated that DOC concentration and the amount of respired C in UV-treated litter increased with UV exposure time, suggesting that longer UV exposure resulted in greater biodegradability. Overall, our study suggested that UV exposure could increase litter biodegradability by increasing the microbial accessibility of lignin, as well as the labile carbon supply to microbes. However, the remaining litter mass was not different between the abiotic and biotic conditions, most likely because the positive effect of UV radiation on litter biodegradability was offset by its negative effect on microbial activity. Our results also suggested that UV radiation could alter the N cycle during decomposition, primarily by inhibiting N immobilization.

Collaboration


Dive into the Lingli Liu's collaboration.

Top Co-Authors

Avatar

Jing Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tara L. Greaver

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Xin Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. King

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Chunlian Qiao

Xinyang Normal University

View shared research outputs
Top Co-Authors

Avatar

Ping Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sen Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge