Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian P. Hamel is active.

Publication


Featured researches published by Christian P. Hamel.


Nature Genetics | 2000

Nuclear gene OPA1 , encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy

Cécile Delettre; Guy Lenaers; Jean-Michel Griffoin; Nadine Gigarel; Corinne Lorenzo; Pascale Belenguer; Laetitia Pelloquin; Josiane Grosgeorge; Claude Turc-Carel; Eric Perret; Catherine Astarie-Dequeker; Laetitia Lasquellec; Bernard Arnaud; Bernard Ducommun; Josseline Kaplan; Christian P. Hamel

Optic atrophy type 1 (OPA1, MIM 165500) is a dominantly inherited optic neuropathy occurring in 1 in 50,000 individuals that features progressive loss in visual acuity leading, in many cases, to legal blindness. Phenotypic variations and loss of retinal ganglion cells, as found in Leber hereditary optic neuropathy (LHON), have suggested possible mitochondrial impairment. The OPA1 gene has been localized to 3q28–q29 (refs 13–19). We describe here a nuclear gene, OPA1, that maps within the candidate region and encodes a dynamin-related protein localized to mitochondria. We found four different OPA1 mutations, including frameshift and missense mutations, to segregate with the disease, demonstrating a role for mitochondria in retinal ganglion cell pathophysiology.


FEBS Letters | 2002

The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space

Aurélien Olichon; Laurent J. Emorine; Eric Descoins; Laetitia Pelloquin; Laetitia Brichese; Nicole Gas; Emmanuelle Guillou; Cécile Delettre; Annie Valette; Christian P. Hamel; Bernard Ducommun; Guy Lenaers; Pascale Belenguer

Mutations in the OPA1 gene are associated with autosomal dominant optic atrophy. OPA1 encodes a dynamin‐related protein orthologous to Msp1 of Schizosaccharomyces pombe and Mgm1p of Saccharomyces cerevisiae, both involved in mitochondrial morphology and genome maintenance. We present immuno‐fluorescence and biochemical evidences showing that OPA1 resides in the mitochondria where it is imported through its highly basic amino‐terminal extension. Proteolysis experiments indicate that OPA1 is present in the inter‐membrane space and electron microscopy further localizes it close to the cristae. The strong association of OPA1 with membranes suggests its anchoring to the inner membrane.


Human Genetics | 2001

Mutation spectrum and splicing variants in the OPA1 gene

Cécile Delettre; Jean-Michel Griffoin; Josseline Kaplan; Hélène Dollfus; Birgit Lorenz; Laurence Faivre; Guy Lenaers; Pascale Belenguer; Christian P. Hamel

Abstract. Optic atrophy type 1 (OPA1, MIM 165500) is a dominantly inherited optic neuropathy that features low visual acuity leading in many cases to legal blindness. We have recently shown, with others, that mutations in the OPA1 gene encoding a dynamin-related mitochondrial protein, underlie the dominant form of optic atrophy. Here we report that OPA1 has eight mRNA isoforms as a result of the alternative splicing of exon 4 and two novel exons named 4b and 5b. In addition, we screened a cohort of 19 unrelated patients with dominant optic atrophy by direct sequencing of the 30 OPA1 exons (including exons 4b and 5b) and found mutations in 17 (89%) of them of which 8 were novel. A majority of these mutations were truncative (65%) and located in exons 8 to 28, but a number of them were amino acid changes predominantly found in the GTPase domain (exons 8 to 15). We hypothesize that at least two modifications of OPA1 may lead to dominant optic atrophy, that is alteration in GTPase activity and loss of the last seven C-terminal amino acids that putatively interact with other proteins.


Orphanet Journal of Rare Diseases | 2007

Cone rod dystrophies.

Christian P. Hamel

Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, and the visual prognosis is poor. Management aims at slowing down the degenerative process, treating the complications and helping patients to cope with the social and psychological impact of blindness.


Nature Genetics | 2006

BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus

Corinne Stoetzel; Virginie Laurier; Erica E. Davis; Jean Muller; Suzanne Rix; Jose L. Badano; Carmen C. Leitch; Nabiha Salem; Eliane Chouery; Sandra Corbani; Nadine Jalk; Serge Vicaire; Pierre Sarda; Christian P. Hamel; Didier Lacombe; Muriel Holder; Sylvie Odent; Susan Holder; Alice S. Brooks; Nursel Elcioglu; Eduardo Silva; Béatrice Rossillion; Sabine Sigaudy; Thomy de Ravel; Richard Alan Lewis; Bruno Leheup; Alain Verloes; Patrizia Amati-Bonneau; André Mégarbané; Olivier Poch

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous ciliopathy. Although nine BBS genes have been cloned, they explain only 40–50% of the total mutational load. Here we report a major new BBS locus, BBS10, that encodes a previously unknown, rapidly evolving vertebrate-specific chaperonin-like protein. We found BBS10 to be mutated in about 20% of an unselected cohort of families of various ethnic origins, including some families with mutations in other BBS genes, consistent with oligogenic inheritance. In zebrafish, mild suppression of bbs10 exacerbated the phenotypes of other bbs morphants.


American Journal of Human Genetics | 2007

Identification of a Novel BBS Gene (BBS12) Highlights the Major Role of a Vertebrate-Specific Branch of Chaperonin-Related Proteins in Bardet-Biedl Syndrome

Corinne Stoetzel; Jean Muller; Virginie Laurier; Erica E. Davis; Norann A. Zaghloul; Serge Vicaire; Cécile Jacquelin; Frédéric Plewniak; Carmen C. Leitch; Pierre Sarda; Christian P. Hamel; Thomy de Ravel; Richard Alan Lewis; Evelyne Friederich; Christelle Thibault; Jean-Marc Danse; Alain Verloes; Dominique Bonneau; Nicholas Katsanis; Olivier Poch; Jean-Louis Mandel; Hélène Dollfus

Bardet-Biedl syndrome (BBS) is primarily an autosomal recessive ciliopathy characterized by progressive retinal degeneration, obesity, cognitive impairment, polydactyly, and kidney anomalies. The disorder is genetically heterogeneous, with 11 BBS genes identified to date, which account for ~70% of affected families. We have combined single-nucleotide-polymorphism array homozygosity mapping with in silico analysis to identify a new BBS gene, BBS12. Patients from two Gypsy families were homozygous and haploidentical in a 6-Mb region of chromosome 4q27. FLJ35630 was selected as a candidate gene, because it was predicted to encode a protein with similarity to members of the type II chaperonin superfamily, which includes BBS6 and BBS10. We found pathogenic mutations in both Gypsy families, as well as in 14 other families of various ethnic backgrounds, indicating that BBS12 accounts for approximately 5% of all BBS cases. BBS12 is vertebrate specific and, together with BBS6 and BBS10, defines a novel branch of the type II chaperonin superfamily. These three genes are characterized by unusually rapid evolution and are likely to perform ciliary functions specific to vertebrates that are important in the pathophysiology of the syndrome, and together they account for about one-third of the total BBS mutational load. Consistent with this notion, suppression of each family member in zebrafish yielded gastrulation-movement defects characteristic of other BBS morphants, whereas simultaneous suppression of all three members resulted in severely affected embryos, possibly hinting at partial functional redundancy within this protein family.


American Journal of Human Genetics | 2009

TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness.

Isabelle Audo; Susanne Kohl; Bart P. Leroy; Francis L. Munier; Xavier Guillonneau; Saddek Mohand-Said; Kinga Bujakowska; Emeline F. Nandrot; Birgit Lorenz; Markus N. Preising; Ulrich Kellner; Agnes B. Renner; Antje Bernd; Aline Antonio; Veselina Moskova-Doumanova; Marie-Elise Lancelot; Charlotte M. Poloschek; Isabelle Drumare; Sabine Defoort-Dhellemmes; Bernd Wissinger; Thierry Léveillard; Christian P. Hamel; Daniel F. Schorderet; Elfride De Baere; Wolfgang Berger; Samuel G. Jacobson; Eberhart Zrenner; José-Alain Sahel; Shomi S. Bhattacharya; Christina Zeitz

Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of the ON bipolar cell response. This dysfunction is present in patients with complete X-linked and autosomal-recessive congenital stationary night blindness (CSNB) and can be assessed by standard full-field electroretinography (ERG), showing severely reduced rod b-wave amplitude and slightly altered cone responses. Although many cases of complete CSNB (cCSNB) are caused by mutations in NYX and GRM6, in approximately 60% of the patients the gene defect remains unknown. Animal models of human diseases are a good source for candidate genes, and we noted that a cCSNB phenotype present in homozygous Appaloosa horses is associated with downregulation of TRPM1. TRPM1, belonging to the family of transient receptor potential channels, is expressed in ON bipolar cells and therefore qualifies as an excellent candidate. Indeed, mutation analysis of 38 patients with CSNB identified ten unrelated cCSNB patients with 14 different mutations in this gene. The mutation spectrum comprises missense, splice-site, deletion, and nonsense mutations. We propose that the cCSNB phenotype in these patients is due to the absence of functional TRPM1 in retinal ON bipolar cells.


Gene Therapy | 2007

Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium.

G Le Meur; Knut Stieger; Alexander J. Smith; M. Weber; Jack-Yves Deschamps; D. Nivard; Alexandra Mendes-Madeira; Nathalie Provost; Yann Péréon; Yan Cherel; Robin R. Ali; Christian P. Hamel; Philippe Moullier; Fabienne Rolling

Previous studies have tested gene replacement therapy in RPE65-deficient dogs using recombinant adeno-associated virus 2/2 (rAAV2/2), -2/1 or -2/5 mediated delivery of the RPE65 gene. They all documented restoration of dark- and light-adapted electroretinography responses and improved psychophysical outcomes. Use of a specific RPE65 promoter and a rAAV vector that targets transgene expression specifically to the RPE may, however, provide a safer setting for the long-term therapeutic expression of RPE65. Subretinal injection of rAAV2 pseudotyped with serotype 4 (rAAV2/4) specifically targets the RPE. The purpose of our study was to evaluate a rAAV2/4 vector carrying a human RPE65cDNA driven by a human RPE65 promoter, for the ability to restore vision in RPE65−/− purebred Briard dogs and to assess the safety of gene transfer with respect to retinal morphology and function. rAAV2/4 and rAAV2/2 vectors containing similar human RPE65 promoter and cDNA cassettes were generated and administered subretinally in eight affected dogs, ages 8–30 months (n=6 with rAAV2/4, n=2 with rAAV2/2). Although fluorescein angiography and optical coherence tomography examinations displayed retinal abnormalities in treated retinas, electrophysiological analysis demonstrated that restoration of rod and cone photoreceptor function started as soon as 15 days post-injection, reaching maximal function at 3 months post-injection, and remaining stable thereafter in all animals treated at 8–11 months of age. As assessed by the ability of these animals to avoid obstacles in both dim and normal light, functional vision was restored in the treated eye, whereas the untreated contralateral eye served as an internal control. The dog treated at a later age (30 months) did not recover retinal function or vision, suggesting that there might be a therapeutic window for the successful treatment of RPE65−/− dogs by gene replacement therapy.


American Journal of Human Genetics | 2004

Retinal Dehydrogenase 12 (RDH12) Mutations in Leber Congenital Amaurosis

Isabelle Perrault; Sylvain Hanein; Sylvie Gerber; Fabienne Barbet; Dominique Ducroq; Hélène Dollfus; Christian P. Hamel; Jean-Louis Dufier; Arnold Munnich; Josseline Kaplan; Jean-Michel Rozet

Leber congenital amaurosis (LCA), the most early-onset and severe form of all inherited retinal dystrophies, is responsible for congenital blindness. Ten LCA genes have been mapped, and seven of these have been identified. Because some of these genes are involved in the visual cycle, we regarded the retinal pigment epithelium and photoreceptor-specific retinal dehydrogenase (RDH) genes as candidate genes in LCA. Studying a series of 110 unrelated patients with LCA, we found mutations in the photoreceptor-specific RDH12 gene in a significant subset of patients (4.1%). Interestingly, all patients harboring RDH12 mutations had a severe yet progressive rod-cone dystrophy with severe macular atrophy but no or mild hyperopia.


Annals of Neurology | 2005

OPA1 R445H mutation in optic atrophy associated with sensorineural deafness

Patrizia Amati-Bonneau; Agnès Guichet; Aurélien Olichon; Arnaud Chevrollier; Frédérique Viala; Stéphanie Miot; Carmen Ayuso; Sylvie Odent; Catherine Arrouet; Christophe Verny; Marie‐Noelle Calmels; Gilles Simard; Pascale Belenguer; Jing Wang; Jean-Luc Puel; Christian P. Hamel; Yves Malthièry; Dominique Bonneau; Guy Lenaers; Pascal Reynier

The heterozygous R445H mutation in OPA1 was found in five patients with optic atrophy and deafness. Audiometry suggested that the sensorineural deafness resulted from auditory neuropathy. Skin fibroblasts showed hyperfragmentation of the mitochondrial network, decreased mitochondrial membrane potential, and adenosine triphosphate synthesis defect. In addition, OPA1 was found to be widely expressed in the sensory and neural cochlear cells of the guinea pig. Thus, optic atrophy and deafness may be related to energy defects due to a fragmented mitochondrial network. Ann Neurol 2005

Collaboration


Dive into the Christian P. Hamel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josseline Kaplan

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Kohl

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvie Gerber

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge