Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian P. Kratz is active.

Publication


Featured researches published by Christian P. Kratz.


Nature Genetics | 2006

Germline KRAS mutations cause Noonan syndrome

Suzanne Schubbert; Martin Zenker; Sara L. Rowe; Silke Böll; Cornelia Klein; Gideon Bollag; Ineke van der Burgt; Luciana Musante; Vera M. Kalscheuer; Lars-Erik Wehner; Hoa Nguyen; Brian L. West; Kam Y. J. Zhang; Erik A. Sistermans; Anita Rauch; Charlotte M. Niemeyer; Kevin Shannon; Christian P. Kratz

Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause ∼50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream effectors, including Ras. We discovered de novo germline KRAS mutations that introduce V14I, T58I or D153V amino acid substitutions in five individuals with Noonan syndrome and a P34R alteration in a individual with cardio-facio-cutaneous syndrome (MIM 115150), which has overlapping features with Noonan syndrome. Recombinant V14I and T58I K-Ras proteins show defective intrinsic GTP hydrolysis and impaired responsiveness to GTPase activating proteins, render primary hematopoietic progenitors hypersensitive to growth factors and deregulate signal transduction in a cell lineage–specific manner. These studies establish germline KRAS mutations as a cause of human disease and infer that the constellation of developmental abnormalities seen in Noonan syndrome spectrum is, in large part, due to hyperactive Ras.


Journal of Clinical Investigation | 2008

BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas

Stefan M. Pfister; Wibke G. Janzarik; Marc Remke; Aurélie Ernst; Wiebke Werft; Natalia Becker; Grischa Toedt; Andrea Wittmann; Christian P. Kratz; Heike Olbrich; Rezvan Ahmadi; Barbara Thieme; Stefan Joos; Bernhard Radlwimmer; Andreas E. Kulozik; Torsten Pietsch; Christel Herold-Mende; Astrid Gnekow; Guido Reifenberger; Andrey Korshunov; Wolfram Scheurlen; Heymut Omran; Peter Lichter

The molecular pathogenesis of pediatric astrocytomas is still poorly understood. To further understand the genetic abnormalities associated with these tumors, we performed a genome-wide analysis of DNA copy number aberrations in pediatric low-grade astrocytomas by using array-based comparative genomic hybridization. Duplication of the BRAF protooncogene was the most frequent genomic aberration, and tumors with BRAF duplication showed significantly increased mRNA levels of BRAF and a downstream target, CCND1, as compared with tumors without duplication. Furthermore, denaturing HPLC showed that activating BRAF mutations were detected in some of the tumors without BRAF duplication. Similarly, a marked proportion of low-grade astrocytomas from adult patients also had BRAF duplication. Both the stable silencing of BRAF through shRNA lentiviral transduction and pharmacological inhibition of MEK1/2, the immediate downstream phosphorylation target of BRAF, blocked the proliferation and arrested the growth of cultured tumor cells derived from low-grade gliomas. Our findings implicate aberrant activation of the MAPK pathway due to gene duplication or mutation of BRAF as a molecular mechanism of pathogenesis in low-grade astrocytomas and suggest inhibition of the MAPK pathway as a potential treatment.


Nature Genetics | 2010

A restricted spectrum of NRAS mutations causes Noonan syndrome

Ion C. Cirstea; Kerstin Kutsche; Radovan Dvorsky; Lothar Gremer; Claudio Carta; Denise Horn; Amy E. Roberts; Francesca Lepri; Torsten Merbitz-Zahradnik; Rainer König; Christian P. Kratz; Francesca Pantaleoni; Maria Lisa Dentici; Victoria A. Joshi; Raju Kucherlapati; Laura Mazzanti; Stefan Mundlos; Michael A. Patton; Margherita Silengo; Cesare Rossi; Giuseppe Zampino; Cristina Digilio; Liborio Stuppia; Eva Seemanova; Len A. Pennacchio; Bruce D. Gelb; Bruno Dallapiccola; Alfred Wittinghofer; Mohammad Reza Ahmadian; Marco Tartaglia

Noonan syndrome, a developmental disorder characterized by congenital heart defects, reduced growth, facial dysmorphism and variable cognitive deficits, is caused by constitutional dysregulation of the RAS-MAPK signaling pathway. Here we report that germline NRAS mutations conferring enhanced stimulus-dependent MAPK activation account for some cases of this disorder. These findings provide evidence for an obligate dependency on proper NRAS function in human development and growth.


Journal of Medical Genetics | 2006

Expansion of the genotypic and phenotypic spectrum in patients with KRAS germline mutations

Martin Zenker; Katarina Lehmann; Anna Leana Schulz; Helmut Barth; Dagmar Hansmann; Rainer Koenig; Rudolf Korinthenberg; Martina Kreiss-Nachtsheim; Peter Meinecke; Susanne Morlot; Stefan Mundlos; Anne S Quante; Salmo Raskin; Dirk Schnabel; Lars-Erik Wehner; Christian P. Kratz; Denise Horn; Kerstin Kutsche

Background: Noonan syndrome, cardio-facio-cutaneous syndrome (CFC) and Costello syndrome constitute a group of developmental disorders with an overlapping pattern of congenital anomalies. Each of these conditions can be caused by germline mutations in key components of the highly conserved Ras-MAPK pathway, possibly reflecting a similar pathogenesis underlying the three disorders. Germline mutations in KRAS have recently been identified in a small number of patients with Noonan syndrome and CFC. Methods and results: 260 patients were screened for KRAS mutations by direct sequencing. Overall, we detected KRAS mutations in 12 patients, including three known and eight novel sequence alterations. All mutations are predicted to cause single amino acid substitutions. Remarkably, our cohort of individuals with KRAS mutations showed a high clinical variability, ranging from Noonan syndrome to CFC, and also included two patients who met the clinical criteria of Costello syndrome. Conclusion: Our findings reinforce the picture of a clustered distribution of disease associated KRAS germline alterations. We further defined the phenotypic spectrum associated with KRAS missense mutations and provided the first evidence of clinical differences in patients with KRAS mutations compared with Noonan syndrome affected individuals with heterozygous PTPN11 mutations and CFC patients carrying a BRAF, MEK1 or MEK1 alteration, respectively. We speculate that the observed phenotypic variability may be related, at least in part, to specific genotypes and possibly reflects the central role of K-Ras in a number of different signalling pathways.


Journal of Medical Genetics | 2014

Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘Care for CMMRD’ (C4CMMRD)

Katharina Wimmer; Christian P. Kratz; Hans F. A. Vasen; Olivier Caron; Chrystelle Colas; Natacha Entz-Werle; Anne-Marie Gerdes; Yael Goldberg; Denisa Ilencikova; Martine Muleris; Alex Duval; Noémie Lavoine; Clara Ruiz-Ponte; Irene Slavc; Brigit Burkhardt; Laurence Brugières

Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain and intestinal tract tumours. Patients show a variety of non-malignant features that are indicative of CMMRD. However, currently no criteria that should entail diagnostic evaluation of CMMRD exist. We present a three-point scoring system for the suspected diagnosis CMMRD in a paediatric/young adult cancer patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1–2 points. They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches a minimum of three points by adding the points of the malignancy and the additional features. The diagnostic steps to confirm or refute the suspected diagnosis are outlined. We expect that application of the suggested strategy for CMMRD diagnosis will increase the number of patients being identified at the time when they develop their first tumour. This will allow adjustment of the treatment modalities, offering surveillance strategies for second malignancies and appropriate counselling of the entire family.


British Journal of Haematology | 2008

Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options

Charlotte M. Niemeyer; Christian P. Kratz

Myelodysplastic syndromes (MDS) and the mixed myelodysplastic/myeloproliferative disorder juvenile myelomonocytic leukaemia (JMML) are rare haematopoietic stem cell diseases in children. While MDS‐initiating events remain largely obscure, a growing body of clinical, genetic and laboratory evidence suggests that JMML is, at least in part, caused by aberrant signal transduction resulting from mutations of components of the RAS signalling pathway. To date, haematopoietic stem cell transplantation cures more than half of children diagnosed with MDS or JMML. Research on genetic conditions predisposing to MDS in young age, such as inherited syndromes with bone marrow failure, may present important insights into MDS pathogenesis.


Journal of Medical Genetics | 2007

SOS1 is the second most common Noonan gene but plays no major role in cardio-facio-cutaneous syndrome

Martin Zenker; Denise Horn; Dagmar Wieczorek; Judith Allanson; Silke Pauli; Ineke van der Burgt; Helmuth-Guenther Doerr; Harald Gaspar; Michael Hofbeck; Gabriele Gillessen-Kaesbach; Andreas Koch; Peter Meinecke; Stefan Mundlos; Anja Nowka; Anita Rauch; Silke Reif; Christian von Schnakenburg; Heide Seidel; Lars-Erik Wehner; Christiane Zweier; Susanne Bauhuber; Verena Matejas; Christian P. Kratz; Christoph Thomas; Kerstin Kutsche

Background: Heterozygous gain-of-function mutations in various genes encoding proteins of the Ras-MAPK signalling cascade have been identified as the genetic basis of Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFCS). Mutations of SOS1, the gene encoding a guanine nucleotide exchange factor for Ras, have been the most recent discoveries in patients with NS, but this gene has not been studied in patients with CFCS. Methods and results: We investigated SOS1 in a large cohort of patients with disorders of the NS–CFCS spectrum, who had previously tested negative for mutations in PTPN11, KRAS, BRAF, MEK1 and MEK2. Missense mutations of SOS1 were discovered in 28% of patients with NS. In contrast, none of the patients classified as having CFCS was found to carry a pathogenic sequence change in this gene. Conclusion: We have confirmed SOS1 as the second major gene for NS. Patients carrying mutations in this gene have a distinctive phenotype with frequent ectodermal anomalies such as keratosis pilaris and curly hair. However, the clinical picture associated with SOS1 mutations is different from that of CFCS. These findings corroborate that, despite being caused by gain-of-function mutations in molecules belonging to the same pathway, NS and CFCS scarcely overlap genotypically.


Nature Genetics | 2013

Meta-analysis identifies four new loci associated with testicular germ cell tumor

Charles C. Chung; Peter A. Kanetsky; Zhaoming Wang; Michelle A.T. Hildebrandt; Roelof Koster; Rolf I. Skotheim; Christian P. Kratz; Clare Turnbull; Victoria K. Cortessis; Anne Cathrine Bakken; D. Timothy Bishop; Michael B. Cook; R. Loren Erickson; Sophie D. Fosså; Kevin B. Jacobs; Larissa A. Korde; Sigrid Marie Kraggerud; Ragnhild A. Lothe; Jennifer T. Loud; Nazneen Rahman; Eila C. Skinner; Duncan C. Thomas; Xifeng Wu; Meredith Yeager; Fredrick R. Schumacher; Mark H. Greene; Stephen M. Schwartz; Katherine A. McGlynn; Stephen J. Chanock; Katherine L. Nathanson

We conducted a meta-analysis to identify new susceptibility loci for testicular germ cell tumor (TGCT). In the discovery phase, we analyzed 931 affected individuals and 1,975 controls from 3 genome-wide association studies (GWAS). We conducted replication in 6 independent sample sets comprising 3,211 affected individuals and 7,591 controls. In the combined analysis, risk of TGCT was significantly associated with markers at four previously unreported loci: 4q22.2 in HPGDS (per-allele odds ratio (OR) = 1.19, 95% confidence interval (CI) = 1.12–1.26; P = 1.11 × 10−8), 7p22.3 in MAD1L1 (OR = 1.21, 95% CI = 1.14–1.29; P = 5.59 × 10−9), 16q22.3 in RFWD3 (OR = 1.26, 95% CI = 1.18–1.34; P = 5.15 × 10−12) and 17q22 (rs9905704: OR = 1.27, 95% CI = 1.18–1.33; P = 4.32 × 10−13 and rs7221274: OR = 1.20, 95% CI = 1.12–1.28; P = 4.04 × 10−9), a locus that includes TEX14, RAD51C and PPM1E. These new TGCT susceptibility loci contain biologically plausible genes encoding proteins important for male germ cell development, chromosomal segregation and the DNA damage response.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2011

Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes.

Christian P. Kratz; Suthee Rapisuwon; Helen Reed; Henrik Hasle; Philip S. Rosenberg

Noonan syndrome (NS), Costello syndrome (CS), cardiofaciocutaneous syndrome (CFCS), and LEOPARD syndrome (now also referred to as Noonan syndrome with multiple lentigines or NSML) are clinically overlapping dominant disorders that are caused by mutations in RAS signaling pathway genes. The spectrum of cancer susceptibility in this group of disorders has not been studied in detail. We identified more than 1900 cases of NS, CS, CFCS, or NSML reported in the literature between 1937 and 2010; 88 cancers were reported. The most common cancers reported in 1051 NS subjects were neuroblastoma (n = 8), acute lymphoblastic leukemia (n = 8), low grade glioma (n = 6), and rhabdomyosarcoma (n = 6). These associations are biologically plausible, given that somatic RAS pathway mutations are known to occur in these specific cancers. In addition, 40 childhood cases of myeloproliferative disease were described in individuals with NS, several of whom experienced a benign course of this hematologic condition. We confirmed the previously described association between CS and cancer in 268 reported individuals: 19 had rhabdomyosarcoma, 4 had bladder cancer, and 5 had neuroblastoma. By age 20, the cumulative incidence of cancer was approximately 4% for NS and 15% for CS; both syndromes had a cancer incidence peak in childhood. The cancers described in CFCS and NSML overlapped with those reported in NS and CS. Future epidemiologic studies will be required to confirm the described cancer spectrum and to estimate precise cancer risks. Published 2011 Wiley‐Liss, Inc.


Leukemia Research | 2009

Juvenile Myelomonocytic Leukemia: A Report from the 2nd International JMML Symposium

Rebecca J. Chan; Todd Cooper; Christian P. Kratz; Brian Weiss; Mignon L. Loh

Juvenile myelomonocytic leukemia (JMML) is an aggressive childhood myeloproliferative disorder characterized by the overproduction of myelomonocytic cells. JMML incidence approaches 1.2/million persons in the United States (Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975-1995). Although rare, JMML is innately informative as the molecular genetics of this disease implicates hyperactive Ras as an essential initiating event. Given that Ras is one of the most frequently mutated oncogenes in human cancer, findings from this disease are applicable to more genetically diverse and complex adult leukemias. The JMML Foundation (www.jmmlfoundation.org) was founded by parent advocates dedicated to finding a cure for this disease. They work to bring investigators together in a collaborative manner. This article summarizes key presentations from The Second International JMML Symposium, on 7-8 December 2007 in Atlanta, GA. A list of all participants is in Supplementary Table.

Collaboration


Dive into the Christian P. Kratz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Zenker

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Kevin Shannon

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark H. Greene

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Niemeyer

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Trebo

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Mignon L. Loh

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge