Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian P. Pallasch is active.

Publication


Featured researches published by Christian P. Pallasch.


Nucleic Acids Research | 2016

Distribution of miRNA expression across human tissues.

Nicole Ludwig; Petra Leidinger; Kurt Becker; Christina Backes; Tobias Fehlmann; Christian P. Pallasch; Steffi Rheinheimer; Benjamin Meder; Cord F. Stähler; Eckart Meese; Andreas Keller

We present a human miRNA tissue atlas by determining the abundance of 1997 miRNAs in 61 tissue biopsies of different organs from two individuals collected post-mortem. One thousand three hundred sixty-four miRNAs were discovered in at least one tissue, 143 were present in each tissue. To define the distribution of miRNAs, we utilized a tissue specificity index (TSI). The majority of miRNAs (82.9%) fell in a middle TSI range i.e. were neither specific for single tissues (TSI > 0.85) nor housekeeping miRNAs (TSI < 0.5). Nonetheless, we observed many different miRNAs and miRNA families that were predominantly expressed in certain tissues. Clustering of miRNA abundances revealed that tissues like several areas of the brain clustered together. Considering -3p and -5p mature forms we observed miR-150 with different tissue specificity. Analysis of additional lung and prostate biopsies indicated that inter-organism variability was significantly lower than inter-organ variability. Tissue-specific differences between the miRNA patterns appeared not to be significantly altered by storage as shown for heart and lung tissue. MiRNAs TSI values of human tissues were significantly (P = 10−8) correlated with those of rats; miRNAs that were highly abundant in certain human tissues were likewise abundant in according rat tissues. We implemented a web-based repository enabling scientists to access and browse the data (https://ccb-web.cs.uni-saarland.de/tissueatlas).


Blood | 2008

The kinase inhibitor dasatinib induces apoptosis in chronic lymphocytic leukemia cells in vitro with preference for a subgroup of patients with unmutated IgVH genes

Aditya Veldurthy; Michaela Patz; Susanne Hagist; Christian P. Pallasch; Clemens-Martin Wendtner; Michael Hallek; Günter Krause

Src family kinases (SFKs) were described to be overexpressed in chronic lymphocytic leukemia (CLL). We wished to examine the effects of the Src and Abl kinase inhibitor dasatinib on the intracellular signaling and survival of CLL cells. Dasa-tinib showed a dose- and time-dependent reduction of global tyrosine phosphorylation and of activating phosphotyrosine levels of SFKs. Treatment with 100 nM dasatinib led to decreased levels of the activated, phosphorylated forms of Akt, Erk1/2, and p38, and induced PARP cleavage through caspase activity. In Mec1 and JVM-3 cell lines, dasatinib increased p53 protein levels and inhibited proliferation. In freshly isolated CLL cells, dasatinib reduced the expression of Mcl-1 and Bcl-x(L). Combination of 5 microM dasatinib and fludarabine increased the apoptosis induction of each by approximately 50%. In 15 primary CLL samples, cells with unmutated immunoglobulin variable heavy chain (IgV(H)) genes were more sensitive to dasatinib than those with mutated IgV(H) genes (P = .002). In summary, dasatinib shows potent inhibitory effects on the survival of CLL cells in vitro, most prominently in samples obtained from patients with unfavorable prognostic features.


Cancer Research | 2012

Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia

Constance Baer; Rainer Claus; Lukas P. Frenzel; Manuela Zucknick; Yoon Jung Park; Lei Gu; Dieter Weichenhan; Martina Fischer; Christian P. Pallasch; Esther Herpel; Michael Rehli; John C. Byrd; Clemens M. Wendtner; Christoph Plass

Dysregulated microRNA (miRNA) expression contributes to the pathogenesis of hematopoietic malignancies, including chronic lymphocytic leukemia (CLL). However, an understanding of the mechanisms that cause aberrant miRNA transcriptional control is lacking. In this study, we comprehensively investigated the role and extent of miRNA epigenetic regulation in CLL. Genome-wide profiling conducted on 24 CLL and 10 healthy B cell samples revealed global DNA methylation patterns upstream of miRNA sequences that distinguished malignant from healthy cells and identified putative miRNA promoters. Integration of DNA methylation and miRNA promoter data led to the identification of 128 recurrent miRNA targets for aberrant promoter DNA methylation. DNA hypomethylation accounted for more than 60% of all aberrant promoter-associated DNA methylation in CLL, and promoter DNA hypomethylation was restricted to well-defined regions. Individual hyper- and hypomethylated promoters allowed discrimination of CLL samples from healthy controls. Promoter DNA methylation patterns were confirmed in an independent patient cohort, with 11 miRNAs consistently showing an inverse correlation between DNA methylation status and expression level. Together, our findings characterize the role of epigenetic changes in the regulation of miRNA transcription and create a repository of disease-specific promoter regions that may provide additional insights into the pathogenesis of CLL.


Cell | 2014

Sensitizing Protective Tumor Microenvironments to Antibody-Mediated Therapy

Christian P. Pallasch; Ilya B. Leskov; Christian Braun; Daniela Vorholt; Adam Drake; Yadira M. Soto-Feliciano; Eric H. Bent; Janine Schwamb; Bettina P. Iliopoulou; Nadine Kutsch; Nico van Rooijen; Lukas P. Frenzel; Clemens M. Wendtner; Lukas C. Heukamp; Karl Anton Kreuzer; Michael Hallek; Jianzhu Chen; Michael T. Hemann

Therapy-resistant microenvironments represent a major barrier toward effective elimination of disseminated malignancies. Here, we show that select microenvironments can underlie resistance to antibody-based therapy. Using a humanized model of treatment refractory B cell leukemia, we find that infiltration of leukemia cells into the bone marrow rewires the tumor microenvironment to inhibit engulfment of antibody-targeted tumor cells. Resistance to macrophage-mediated killing can be overcome by combination regimens involving therapeutic antibodies and chemotherapy. Specifically, the nitrogen mustard cyclophosphamide induces an acute secretory activating phenotype (ASAP), releasing CCL4, IL8, VEGF, and TNFα from treated tumor cells. These factors induce macrophage infiltration and phagocytic activity in the bone marrow. Thus, the acute induction of stress-related cytokines can effectively target cancer cells for removal by the innate immune system. This synergistic chemoimmunotherapeutic regimen represents a potent strategy for using conventional anticancer agents to alter the tumor microenvironment and promote the efficacy of targeted therapeutics.


Blood | 2010

Detection of a novel truncating Merkel cell polyomavirus large T antigen deletion in chronic lymphocytic leukemia cells.

N. Deepa Pantulu; Christian P. Pallasch; Anna Kordelia Kurz; Ahmad Kassem; Lukas P. Frenzel; Sebastian Sodenkamp; Hans Michael Kvasnicka; Clemens M. Wendtner; Axel zur Hausen

Merkel cell polyomavirus (MCPyV) is detected in approximately 80% of Merkel cell carcinomas (MCC). Yet, clonal integration and truncating mutations of the large T antigen (LTAg) of MCPyV are restricted to MCC. We tested the presence and mutations of MCPyV in highly purified leukemic cells of 70 chronic lymphocytic leukemia (CLL) patients. MCPyV was detected in 27.1% (n = 19) of these CLL cases. In contrast, MCPyV was detected only in 13.4% of normal controls (P < .036) in which no LTAg mutations were found. Mutational analyses revealed a novel 246bp LTAg deletion in the helicase gene in 6 of 19 MCPyV-positive CLL cases. 2 CLL cases showed concomitant mutated and wild-type MCPyV. Immunohistochemistry revealed protein expression of the LTAg in MCPyV-positive CLL cases. The detection of MCPyV, including LTAg deletions and LTAg expression in CLL cells argues for a potential role of MCPyV in a significant subset of CLL cases.


Leukemia | 2008

Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B-cell chronic lymphocytic leukemia cells

Christian P. Pallasch; Janine Schwamb; Königs S; Alexandra Schulz; Debey S; Kofler D; Joachim L. Schultze; Michael Hallek; Alfred Ultsch; Clemens-Martin Wendtner

Constitutively activated pathways contribute to apoptosis resistance in chronic lymphocytic leukemia (CLL). Little is known about the metabolism of lipids and function of lipases in CLL cells. Performing gene expression profiling including B-cell receptor (BCR) stimulation of CLL cells in comparison to healthy donor CD5+ B cells, we found significant overexpression of lipases and phospholipases in CLL cells. In addition, we observed that the recently defined prognostic factor lipoprotein lipase (LPL) is induced by stimulation of BCR in CLL cells but not in CD5+ normal B cells. CLL cellular lysates exhibited significantly higher lipase activity compared to healthy donor controls. Incubation of primary CLL cells (n=26) with the lipase inhibitor orlistat resulted in induction of apoptosis, with a half-maximal dose (IC50) of 2.35 μM. In healthy B cells a significantly higher mean IC50 of 148.5 μM of orlistat was observed, while no apoptosis was induced in healthy peripheral blood mononuclear cells (PBMCs; P<0.001). Orlistat-mediated cytotoxicity was decreased by BCR stimulation. Finally, the cytotoxic effects of orlistat on primary CLL cells were enhanced by the simultaneous incubation with fludarabine (P=0.003). In summary, alterations of lipid metabolism are involved in CLL pathogenesis and might represent a novel therapeutic target in CLL.


International Journal of Cancer | 2005

Autoantibodies against GLEA2 and PHF3 in glioblastoma: tumor-associated autoantibodies correlated with prolonged survival.

Christian P. Pallasch; Anne-Katrin Struss; Angela Munnia; Jochem König; Wolf-Ingo Steudel; Ulrike Fischer; Eckart Meese

Using serological identification of recombinantly expressed tumor antigens (SEREX), we identified several autoantibodies against glioma‐expressed antigens including GLEA1, GLEA2 and PHD‐finger protein3 (PHF3). Analysing sera of 62 glioblastoma patients, we found an antibody response against GLEA1 in 15 sera (24.2%), against GLEA2 in 30 sera (48.4%) and against PHF3 in 35 sera (56.5%). Relating patient survival to the occurrence of autoantibodies against either GLEA1, GLEA2 or PHF3, we found a significant prolonged survival for glioblastoma patients positive for autoantibodies against GLEA2 (p = 0.0115) and PHF3 (p = 0.0031), respectively. The median survival of patients with GLEA2 antibodies was increased to 17.4 months and for patients with PHF3 antibodies to 14.7 months, as compared to 7.2 months for patients without GLEA2 or PHF3 antibodies. There was no significant correlation between patient survival and GLEA1‐autoantibodies (p = 0.1611). Herein we present autoantibodies that are: (i) most frequent in glioblastoma patients; (ii) specific for glioblastoma‐associated antigens; and (iii) significantly correlated with prolonged survival in patients with glioblastoma.


Leukemia Research | 2009

Disruption of T cell suppression in chronic lymphocytic leukemia by CD200 blockade

Christian P. Pallasch; Sabine Ulbrich; Reinhild Brinker; Michael Hallek; Robert A. Uger; Clemens-Martin Wendtner

CD200 plays a key role in regulating the immune system and has been shown to be upregulated on the surface of different tumors including chronic lymphocytic leukemia. In this study we addressed the effects of CD200 over-expression in CLL cells on autologous T cells in a mixed lymphocyte reaction system. We used native and CD40 ligand (CD40L)-stimulated CLL cells as antigen-presenting cells (APCs) to expand autologous T cells of 14 patients. T cell proliferation over 3 weeks of in vitro culture was significantly enhanced compared to control cells when using CD40L-stimulated APCs and the anti-CD200 antibody 1B9 (p=0.0004). CD200 blockade was further shown to stimulate antigen-specific T cell responses towards the CLL-associated antigen fibromodulin (p=0.04). Finally, the number of CD4+/CD25high/FOXP3+ T cells (T(reg)) was significantly decreased adding anti-CD200 antibody (p=0.04). In summary, CD200 blockade may provide therapeutic benefits in CLL by augmenting an antigen-specific T cell response with suppression of regulatory T cells.


Blood | 2012

B-cell receptor triggers drug sensitivity of primary CLL cells by controlling glucosylation of ceramides

Janine Schwamb; Valeska Feldhaus; Michael Baumann; Michaela Patz; Susanne Brodesser; Reinhild Brinker; Julia Claasen; Christian P. Pallasch; Michael Hallek; Clemens-Martin Wendtner; Lukas P. Frenzel

Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L-stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.


eLife | 2013

A role for PVRL4-driven cell–cell interactions in tumorigenesis

Natalya N. Pavlova; Christian P. Pallasch; Andrew Elia; Christian Braun; Thomas F. Westbrook; Michael T. Hemann; Stephen J. Elledge

During all stages of tumor progression, cancer cells are subjected to inappropriate extracellular matrix environments and must undergo adaptive changes in order to evade growth constraints associated with the loss of matrix attachment. A gain of function screen for genes that enable proliferation independently of matrix anchorage identified a cell adhesion molecule PVRL4 (poliovirus-receptor-like 4), also known as Nectin-4. PVRL4 promotes anchorage-independence by driving cell-to-cell attachment and matrix-independent integrin β4/SHP-2/c-Src activation. Solid tumors frequently have copy number gains of the PVRL4 locus and some have focal amplifications. We demonstrate that the transformation of breast cancer cells is dependent on PVRL4. Furthermore, growth of orthotopically implanted tumors in vivo is inhibited by blocking PVRL4-driven cell-to-cell attachment with monoclonal antibodies, demonstrating a novel strategy for targeted therapy of cancer. DOI: http://dx.doi.org/10.7554/eLife.00358.001

Collaboration


Dive into the Christian P. Pallasch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael T. Hemann

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge