Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian P. Whitman is active.

Publication


Featured researches published by Christian P. Whitman.


Cellular and Molecular Life Sciences | 2008

The chemical versatility of the β–α–β fold: Catalytic promiscuity and divergent evolution in the tautomerase superfamily

Gerrit J. Poelarends; V. Puthan Veetil; Christian P. Whitman

Abstract.Tautomerase superfamily members have an amino-terminal proline and a β–α–β fold, and include 4-oxalocrotonate tautomerase (4-OT), 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), trans- and cis-3-chloroacrylic acid dehalogenase (CaaD and cis-CaaD, respectively), malonate semialdehyde decarboxylase (MSAD), and macrophage migration inhibitory factor (MIF), which exhibits a phenylpyruvate tautomerase (PPT) activity. Pro-1 is a base (4-OT, CHMI, the PPT activity of MIF) or an acid (CaaD, cis-CaaD, MSAD). Components of the catalytic machinery have been identified and mechanistic hypotheses formulated. Characterization of new homologues shows that these mechanisms are incomplete. 4-OT, CaaD, cis-CaaD, and MSAD also have promiscuous activities with a hydratase activity in CaaD, cis-CaaD, and MSAD, PPT activity in CaaD and cis-CaaD, and CaaD and cis-CaaD activities in 4-OT. The shared promiscuous activities provide evidence for divergent evolution from a common ancestor, give hints about mechanistic relationships, and implicate catalytic promiscuity in the emergence of new enzymes.


Archives of Biochemistry and Biophysics | 2002

The 4-oxalocrotonate tautomerase family of enzymes: how nature makes new enzymes using a β–α–β structural motif☆

Christian P. Whitman

Abstract 4-Oxalocrotonate tautomerase (4-OT) catalyzes the isomerization of β,γ-unsaturated enones to their α,β-isomers. The enzyme is part of a plasmid-encoded pathway, which enables bacteria harboring the plasmid to use various aromatic hydrocarbons as their sole sources of carbon and energy. Among isomerases and enzymes in general, 4-OT is unusual for two reasons: it has one of the smallest known monomer sizes (62 amino acids) and the amino-terminal proline functions as the catalytic base. In addition to Pro-1, three other residues (Arg-11, Arg-39, and Phe-50) have been identified as critical catalytic residues by kinetic analysis, site-directed mutagenesis, chemical synthesis, NMR, and crystallographic studies. Arginine-39 functions as the general acid catalyst (assisted by an ordered water molecule) in the reaction while Arg-11 plays a role in substrate binding and facilitates catalysis by acting as an electron sink. Finally, the hydrophobic nature of the active site, which lowers the p K a of Pro-1 to ∼6.4 and provides a favorable environment for catalysis, is largely maintained by Phe-50. 4-OT is also the title enzyme of the 4-OT family of enzymes. The chromosomal homologues in this family are composed of monomers ranging in size from 61 to 79 amino acids, which code a β–α–β structural motif. The homologues all retain Pro-1 and generally have an aromatic or hydrophobic amino acid at the Phe-50 position. Characterization of representative members has uncovered mechanistic and structural diversity. A new activity, a trans -3-chloroacrylic acid dehalogenase, has been identified in addition to the previously known tautomerase and isomerase activities. Two new structures have also been found, along with the 4-OT hexamer. The dehalogenase functions as a heterohexamer while the Escherichia coli homologue, designated YdcE, functions as a dimer. Moreover, both 4-OT and the Bacillus subtilis homologue, designated YwhB, exhibit low-level dehalogenase activity. Amplification of this activity could have produced the full-fledged dehalogenase. The sum of these observations indicates that Nature uses the β–α–β structural motif as a building block in a variety of manners to create new enzymes.


Biochemistry | 2003

Reactions of trans-3-chloroacrylic acid dehalogenase with acetylene substrates: consequences of and evidence for a hydration reaction.

Susan C. Wang; Maria D. Person; William H. Johnson; Christian P. Whitman

Various soil bacteria use 1,3-dichloropropene, a component of the commercially available fumigants Shell D-D and Telone II, as a sole source of carbon and energy. One enzyme involved in the catabolism of 1,3-dichloropropene is trans-3-chloroacrylic acid dehalogenase (CaaD), which converts the trans-isomers of 3-bromo- and 3-chloroacrylate to malonate semialdehyde. Sequence analysis suggested a relationship between the heterohexameric CaaD and the bacterial isomerase, 4-oxalocrotonate tautomerase (4-OT), thereby distinguishing CaaD from a number of dehalogenases whose mechanisms proceed through an alkyl- or aryl-enzyme intermediate. In this study, the genes for the alpha- and beta-subunits of CaaD have been synthesized using a polymerase chain reaction-based strategy, cloned into separate plasmids, and the proteins expressed and purified as the functional heterohexamer. Subsequently, the product of the reaction was confirmed to be malonate semialdehyde by (1)H and (13)C NMR spectroscopy, and kinetic constants were determined using a UV spectrophotometric assay. In view of the proposed hydrolytic nature of the CaaD-catalyzed reaction, three acetylene compounds were investigated as substrates for the enzyme. One compound, 2-oxo-3-pentynoate, a potent active site-directed irreversible inhibitor of 4-OT, is a substrate for CaaD, and was processed to acetopyruvate with kinetic constants similar to those determined for the trans-isomers of 3-bromo- and 3-chloroacrylate. The remaining two compounds, 3-bromo- and 3-chloropropiolic acid, were transformed into potent irreversible inhibitors of CaaD. The inactivation observed for 3-bromopropiolic acid is due to the covalent modification of Pro-1 of the beta-subunit. The results provide evidence for a hydratase activity and set the stage to use the 3-halopropiolic acids as ligands in inactivated CaaD complexes that can be studied by X-ray crystallography.


Journal of Biological Chemistry | 2007

Crystal Structures of Native and Inactivated cis-3-Chloroacrylic Acid Dehalogenase STRUCTURAL BASIS FOR SUBSTRATE SPECIFICITY AND INACTIVATION BY (R)-OXIRANE-2-CARBOXYLATE

René M. de Jong; Paola Bazzacco; Gerrit J. Poelarends; William H. Johnson; Yoon Jae Kim; Elizabeth A. Burks; Hector Serrano; Andy-Mark W. H. Thunnissen; Christian P. Whitman; Bauke W. Dijkstra

The bacterial degradation pathways for the nematocide 1,3-dichloropropene rely on hydrolytic dehalogenation reactions catalyzed by cis- and trans-3-chloroacrylic acid dehalogenases (cis-CaaD and CaaD, respectively). X-ray crystal structures of native cis-CaaD and cis-CaaD inactivated by (R)-oxirane-2-carboxylate were elucidated. They locate four known catalytic residues (Pro-1, Arg-70, Arg-73, and Glu-114) and two previously unknown, potential catalytic residues (His-28 and Tyr-103′). The Y103F and H28A mutants of these latter two residues displayed reductions in cis-CaaD activity confirming their importance in catalysis. The structure of the inactivated enzyme shows covalent modification of the Pro-1 nitrogen atom by (R)-2-hydroxypropanoate at the C3 position. The interactions in the complex implicate Arg-70 or a water molecule bound to Arg-70 as the proton donor for the epoxide ring-opening reaction and Arg-73 and His-28 as primary binding contacts for the carboxylate group. This proposed binding mode places the (R)-enantiomer, but not the (S)-enantiomer, in position to covalently modify Pro-1. The absence of His-28 (or an equivalent) in CaaD could account for the fact that CaaD is not inactivated by either enantiomer. The cis-CaaD structures support a mechanism in which Glu-114 and Tyr-103′ activate a water molecule for addition to C3 of the substrate and His-28, Arg-70, and Arg-73 interact with the C1 carboxylate group to assist in substrate binding and polarization. Pro-1 provides a proton at C2. The involvement of His-28 and Tyr-103′ distinguishes the cis-CaaD mechanism from the otherwise parallel CaaD mechanism. The two mechanisms probably evolved independently as the result of an early gene duplication of a common ancestor.


Bioorganic Chemistry | 2002

Secretory leukocyte protease inhibitor: inhibition of human immunodeficiency virus-1 infection of monocytic THP-1 cells by a newly cloned protein

Nancy Shine; Susan C. Wang; Krystyna Konopka; Elizabeth A. Burks; Nejat Düzgüneş; Christian P. Whitman

The ability of the salivary protein, secretory leukocyte protease inhibitor (SLPI), to inhibit human immunodeficiency virus-1 (HIV-1) infection in vitro has been reported previously and has led to the suggestion that SLPI may be partially responsible for the low oral transmission rate of HIV-1. However, results contradictory to these findings have also been published. These discrepancies can be attributed to a number of factors ranging from the variability of macrophage susceptibility to HIV infection to the quality of commercially available preparations of SLPI. To resolve these differences and to study further the potential anti-HIV-1 activity of SLPI, the purified and re-folded protein, expressed from a synthetic gene, was examined using human monocytic THP-1 cells. This newly cloned SLPI reduced HIV-1(Ba-L) infection in differentiated THP-1 cells, in contrast to the results observed when using commercially available preparations of SLPI. Interestingly, while the two proteins displayed different anti-HIV effects they had comparable anti-protease activity. The identification of the THP-1 cell line as a system that supports HIV replication, which can be inhibited by a preparation of SLPI now available in large quantities, sets the stage for a thorough investigation of the molecular and structural basis for the anti-HIV activity of SLPI.


Applied Microbiology and Biotechnology | 2005

Identification of a homogentisate-1,2-dioxygenase gene in the fungus Exophiala lecanii-corni: analysis and implications

Claudia K. Gunsch; Qiang Cheng; Kerry A. Kinney; Paul J. Szaniszlo; Christian P. Whitman

Exophiala lecanii-corni is a dimorphic fungus capable of degrading several volatile organic compounds (VOCs) including ethylbenzene, which has been classified as a hazardous air pollutant by the Environmental Protection Agency. In contrast to bacterial species, little is known about the mechanisms of fungal degradation of VOCs. The results described herein suggest a potential pathway for ethylbenzene degradation in E. lecanii-corni via styrene, phenylacetate and homogentisate. Consistent with this proposed pathway, a full-length homogentisate-1,2-dioxygenase gene (ElHDO) has been identified, cloned and sequenced. The nucleotide sequence of ElHDO consists of a 1,452-bp open reading frame encoding a protein with 484 amino acids. The expression of the gene product increases when grown on ethylbenzene, further suggesting that it could be involved in ethylbenzene degradation and may be responsible for the aromatic ring cleavage reaction. In addition, a 907-bp fragment isolated upstream from this gene shares 78% sequence identity at the amino acid level with the amino acid sequences of two fungal phenylacetate hydroxylase genes. This observation suggests that the genes responsible for ethylbenzene degradation may be clustered. This research constitutes the first step towards a better understanding of ethylbenzene degradation in E. lecanii-corni.


Biochemistry | 2010

The structure of the proline utilization a proline dehydrogenase domain inactivated by N-propargylglycine provides insight into conformational changes induced by substrate binding and flavin reduction.

Dhiraj Srivastava; Weidong Zhu; William H. Johnson; Christian P. Whitman; Donald F. Becker; John J. Tanner

Proline utilization A (PutA) from Escherichia coli is a flavoprotein that has mutually exclusive roles as a transcriptional repressor of the put regulon and a membrane-associated enzyme that catalyzes the oxidation of proline to glutamate. Previous studies have shown that the binding of proline in the proline dehydrogenase (PRODH) active site and subsequent reduction of the FAD trigger global conformational changes that enhance PutA-membrane affinity. These events cause PutA to switch from its repressor to its enzymatic role, but the mechanism by which this signal is propagated from the active site to the distal membrane-binding domain is largely unknown. Here, it is shown that N-propargylglycine irreversibly inactivates PutA by covalently linking the flavin N(5) atom to the epsilon-amino of Lys329. Furthermore, inactivation locks PutA into a conformation that may mimic the proline-reduced, membrane-associated form. The 2.15 A resolution structure of the inactivated PRODH domain suggests that the initial events involved in broadcasting the reduced flavin state to the distal membrane-binding domain include major reorganization of the flavin ribityl chain, severe (35 degrees ) butterfly bending of the isoalloxazine ring, and disruption of an electrostatic network involving the flavin N(5) atom, Arg431, and Asp370. The structure also provides information about conformational changes associated with substrate binding. This analysis suggests that the active site is incompletely assembled in the absence of the substrate, and the binding of proline draws together conserved residues in helix 8 and the beta1-alphal loop to complete the active site.


Biochemistry | 2010

Kinetic and Structural Characterization of a Heterohexamer 4- Oxalocrotonate Tautomerase from Chloroflexus aurantiacus J-10-fl: Implications for Functional and Structural Diversity in the Tautomerase Superfamily †

Elizabeth A. Burks; Christopher D. Fleming; Andrew D. Mesecar; Christian P. Whitman; Scott D. Pegan

4-Oxalocrotonate tautomerase (4-OT) isozymes play prominent roles in the bacterial utilization of aromatic hydrocarbons as sole carbon sources. These enzymes catalyze the conversion of 2-hydroxy-2,4-hexadienedioate (or 2-hydroxymuconate) to 2-oxo-3-hexenedioate, where Pro-1 functions as a general base and shuttles a proton from the 2-hydroxyl group of the substrate to the C-5 position of the product. 4-OT, a homohexamer from Pseudomonas putida mt-2, is the most extensively studied 4-OT isozyme and the founding member of the tautomerase superfamily. A search of five thermophilic bacterial genomes identified a coded amino acid sequence in each that had been annotated as a tautomerase-like protein but lacked Pro-1. However, a nearby sequence has Pro-1, but the sequence is not annotated as a tautomerase-like protein. To characterize this group of proteins, two genes from Chloroflexus aurantiacus J-10-fl were cloned, and the corresponding proteins were expressed. Kinetic, biochemical, and X-ray structural analyses show that the two expressed proteins form a functional heterohexamer 4-OT (hh4-OT), composed of three alphabeta dimers. Like the P. putida enzyme, hh4-OT requires the amino-terminal proline and two arginines for the conversion of 2-hydroxymuconate to the product, implicating an analogous mechanism. In contrast to 4-OT, hh4-OT does not exhibit the low-level activity of another tautomerase superfamily member, the heterohexamer trans-3-chloroacrylic acid dehalogenase (CaaD). Characterization of hh4-OT enables functional assignment of the related enzymes, highlights the diverse ways the beta-alpha-beta building block can be assembled into an active enzyme, and provides further insight into the molecular basis of the low-level CaaD activity in 4-OT.


Journal of the American Chemical Society | 2012

Reaction of cis-3-Chloroacrylic Acid Dehalogenase with an Allene Substrate, 2,3-Butadienoate: Hydration Via an Enamine

Gottfried K. Schroeder; William H. Johnson; Jamison P. Huddleston; Hector Serrano; Kenneth A. Johnson; Christian P. Whitman

cis-3-Chloroacrylic acid dehalogenase (cis-CaaD) catalyzes the hydrolytic dehalogenation of cis-3-haloacrylates to yield malonate semialdehyde. The enzyme processes other substrates including an allene (2,3-butadienoate) to produce acetoacetate. In the course of a stereochemical analysis of the cis-CaaD-catalyzed reaction using this allene, the enzyme was unexpectedly inactivated in the presence of NaBH(4) by the reduction of a covalent enzyme-substrate bond. Covalent modification was surprising because the accumulated evidence for cis-CaaD dehalogenation favored a mechanism involving direct substrate hydration mediated by Pro-1. However, the results of subsequent mechanistic, pre-steady state and full progress kinetic experiments are consistent with a mechanism in which an enamine forms between Pro-1 and the allene. Hydrolysis of the enamine or an imine tautomer produces acetoacetate. Reduction of the imine species is likely responsible for the observed enzyme inactivation. This is the first reported observation of a tautomerase superfamily member functioning by covalent catalysis. The results may suggest that some fraction of the cis-CaaD-catalyzed dehalogenation of cis-3-haloacrylates also proceeds by covalent catalysis.


Biochemistry | 2008

Characterization of Cg10062 from Corynebacterium glutamicum: implications for the evolution of cis-3-chloroacrylic acid dehalogenase activity in the tautomerase superfamily.

Gerrit J. Poelarends; Hector Serrano; Maria D. Person; William H. Johnson; Christian P. Whitman

A 149-amino acid protein designated Cg10062 is encoded by a gene from Corynebacterium glutamicum. The physiological function of Cg10062 is unknown, and the gene encoding this protein has no obvious genomic context. Sequence analysis links Cg10062 to the cis-3-chloroacrylic acid dehalogenase (cis-CaaD) family, one of the five known families of the tautomerase superfamily. The characterized tautomerase superfamily members have two distinctive characteristics: a β−α−β structure motif and a catalytic amino-terminal proline. Pro-1 is present in the Cg10062 amino acid sequence along with His-28, Arg-70, Arg-73, Tyr-103, and Glu-114, all of which have been implicated as critical residues for cis-CaaD activity. The gene for Cg10062 has been cloned and the protein overproduced, purified, and subjected to kinetic and mechanistic characterization. Like cis-CaaD, Cg10062 functions as a hydratase: it converts 2-oxo-3-pentynoate to acetopyruvate and processes 3-bromopropiolate to a species that inactivates the enzyme by acylation of Pro-1. Kinetic and 1H NMR spectroscopic studies also show that Cg10062 processes both isomers of 3-chloroacrylic acid at low levels with a clear preference for the cis isomer. Pro-1 is critical for the dehalogenase and hydratase activities because the P1A mutant no longer catalyzes either reaction. The presence of the six key catalytic residues and the hydratase activity coupled with the absence of an efficient cis-CaaD activity and the lack of isomer specificity implicate factors beyond this core set of residues in cis-CaaD catalysis and specificity. This work sets the stage for in-depth mechanistic and structural studies of Cg10062, which could identify the additional features necessary for a fully active and highly specific cis-CaaD. Such results will also shed light on how cis-CaaD emerged in the tautomerase superfamily because Cg10062 could be characteristic of an intermediate along the evolutionary pathway for this dehalogenase.

Collaboration


Dive into the Christian P. Whitman's collaboration.

Top Co-Authors

Avatar

William H. Johnson

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Czerwinski

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Hector Serrano

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Marvin L. Hackert

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Susan C. Wang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamison P. Huddleston

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Gottfried K. Schroeder

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge