Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Poüs is active.

Publication


Featured researches published by Christian Poüs.


Science | 2008

Detection of GTP-Tubulin Conformation in Vivo Reveals a Role for GTP Remnants in Microtubule Rescues

Ariane Dimitrov; Mélanie Quesnoit; Sandrine Moutel; Isabelle Cantaloube; Christian Poüs; Franck Perez

Microtubules display dynamic instability, with alternating phases of growth and shrinkage separated by catastrophe and rescue events. The guanosine triphosphate (GTP) cap at the growing end of microtubules, whose presence is essential to prevent microtubule catastrophes in vitro, has been difficult to observe in vivo. We selected a recombinant antibody that specifically recognizes GTP-bound tubulin in microtubules and found that GTP-tubulin was indeed present at the plus end of growing microtubules. Unexpectedly, GTP-tubulin remnants were also present in older parts of microtubules, which suggests that GTP hydrolysis is sometimes incomplete during polymerization. Observations in living cells suggested that these GTP remnants may be responsible for the rescue events in which microtubules recover from catastrophe.


Cellular Signalling | 2011

The ins and outs of tubulin acetylation: more than just a post-translational modification?

Daniel Perdiz; Rafah Mackeh; Christian Poüs; Anita Baillet

Microtubules are highly dynamic polymers of α/β tubulin heterodimers that play key roles in cell division and in organizing cell cytoplasm. Although they have been discovered more than two decades ago, tubulin post-translational modifications recently gained a new interest as their role was increasingly highlighted in neuron differentiation and neurodegenerative disorders. Here, we specifically focus on tubulin acetylation from its discovery to recent studies that provide new insights into how it is regulated in health and disease and how it impacts microtubule functions. Even though new mechanisms involving tubulin acetylation are regularly being uncovered, the molecular links between its location inside the microtubule lumen and its regulators and effectors is still poorly understood. This review highlights the emerging roles of tubulin acetylation in multiple cellular functions, ranging from cell motility, cell cycle progression or cell differentiation to intracellular trafficking and signalling. It also points out that tubulin acetylation should no longer be seen as a passive marker of microtubule stability, but as a broad regulator of microtubule functions.


Journal of Biological Chemistry | 2010

Starvation-induced Hyperacetylation of Tubulin Is Required for the Stimulation of Autophagy by Nutrient Deprivation

Camille Geeraert; Ameetha Ratier; Simon G. Pfisterer; Daniel Perdiz; Isabelle Cantaloube; Audrey Rouault; Sophie Pattingre; Tassula Proikas-Cezanne; Patrice Codogno; Christian Poüs

The molecular mechanisms underlying microtubule participation in autophagy are not known. In this study, we show that starvation-induced autophagosome formation requires the most dynamic microtubule subset. Upon nutrient deprivation, labile microtubules specifically recruit markers of autophagosome formation like class III-phosphatidylinositol kinase, WIPI-1, the Atg12-Atg5 conjugate, and LC3-I, whereas mature autophagosomes may bind to stable microtubules. We further found that upon nutrient deprivation, tubulin acetylation increases both in labile and stable microtubules and is required to allow autophagy stimulation. Tubulin hyperacetylation on lysine 40 enhances kinesin-1 and JIP-1 recruitment on microtubules and allows JNK phosphorylation and activation. JNK, in turn, triggers the release of Beclin 1 from Bcl-2-Beclin 1 complexes and its recruitment on microtubules where it may initiate autophagosome formation. Finally, although kinesin-1 functions to carry autophagosomes in basal conditions, it is not involved in motoring autophagosomes after nutrient deprivation. Our results show that the dynamics of microtubules and tubulin post-translational modifications play a major role in the regulation of starvation-induced autophagy.


Journal of Cell Science | 2013

Autophagy and microtubules – new story, old players

Rafah Mackeh; Daniel Perdiz; Séverine Lorin; Patrice Codogno; Christian Poüs

Summary Both at a basal level and after induction (especially in response to nutrient starvation), the function of autophagy is to allow cells to degrade and recycle damaged organelles, proteins and other biological constituents. Here, we focus on the role microtubules have in autophagosome formation, autophagosome transport across the cytoplasm and in the formation of autolysosomes. Recent insights into the exact relationship between autophagy and microtubules now point to the importance of microtubule dynamics, tubulin post-translational modifications and microtubule motors in the autophagy process. Such factors regulate signaling pathways that converge to stimulate autophagosome formation. They also orchestrate the movements of pre-autophagosomal structures and autophagosomes or more globally organize and localize immature and mature autophagosomes and lysosomes. Most of the factors that now appear to link microtubules to autophagosome formation or to autophagosome dynamics and fate were identified initially without the notion that sequestration, recruitment and/or interaction with microtubules contribute to their function. Spatial and temporal coordination of many stages in the life of autophagosomes thus underlines the integrative role of microtubules and progressively reveals hidden parts of the autophagy machinery.


Traffic | 2010

SKIP, the host target of the Salmonella virulence factor SifA, promotes kinesin-1-dependent vacuolar membrane exchanges.

Audrey Dumont; Emmanuel Boucrot; Stéphanie Drevensek; Vanessa Daire; Jean-Pierre Gorvel; Christian Poüs; David W. Holden; Stéphane Méresse

In Salmonella‐infected cells, the bacterial effector SifA forms a functional complex with the eukaryotic protein SKIP (SifA and kinesin‐interacting protein). The lack of either partner has important consequences on the intracellular fate and on the virulence of this pathogen. In addition to SifA, SKIP binds the microtubule‐based motor kinesin‐1. Yet the absence of SifA or SKIP results in an unusual accumulation of kinesin‐1 on the bacterial vacuolar membrane. To understand this apparent contradiction, we investigated the interaction between SKIP and kinesin‐1 and the function of this complex. We show that the C‐terminal RUN (RPIP8, UNC‐14 and NESCA) domain of SKIP interacted specifically with the tetratricopeptide repeat (TPR) domain of the kinesin light chain. Overexpression of SKIP induced a microtubule‐ and kinesin‐1‐dependent anterograde movement of late endosomal/lysosomal compartments. In infected cells, SifA contributed to the fission of vesicles from the bacterial vacuole and the SifA/SKIP complex was required for the formation and/or the anterograde transport of kinesin‐1‐enriched vesicles. These observations reflect the role of SKIP as a linker and/or an activator for kinesin‐1.


Cellular Signalling | 2009

Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53

Julien Giustiniani; Vanessa Daire; Isabelle Cantaloube; Geneviève Durand; Christian Poüs; Daniel Perdiz; Anita Baillet

Involved in a wide range of cellular processes such as signal transduction, microtubules are highly dynamic polymers that accumulate various post-translational modifications including polyglutamylation, polyglycylation, carboxyterminal cleavage and acetylation, the functions of which just begin to be uncovered. The molecular chaperone Hsp90, which is essential for the folding and activity of numerous client proteins involved in cell proliferation and apoptosis, associates with the microtubule network but the effects of tubulin post-translational modifications on its microtubule binding has not yet been investigated. Herein, we show that both the constitutive (beta) and the inducible (alpha) Hsp90 isoforms bind to microtubules in a way that depends on the level of tubulin acetylation. Tubulin acetylation also stimulates the binding and the signaling function of at least two of its client proteins, the kinase Akt/PKB and the transcription factor p53. This study highlights the role of tubulin acetylation in modulating microtubule-based transport of Hsp90-chaperoned proteins and thus in regulating signaling dynamics in the cytoplasm.


Autophagy | 2013

Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy.

Séverine Lorin; Marc J. Tol; Chantal Bauvy; Anneke Strijland; Christian Poüs; Arthur J. Verhoeven; Patrice Codogno; Alfred J. Meijer

Amino acids, leucine in particular, are known to inhibit autophagy, at least in part by their ability to stimulate MTOR-mediated signaling. Evidence is presented showing that glutamate dehydrogenase, the central enzyme in amino acid catabolism, contributes to leucine sensing in the regulation of autophagy. The data suggest a dual mechanism by which glutamate dehydrogenase activity modulates autophagy, i.e., by activating MTORC1 and by limiting the formation of reactive oxygen species.


Journal of Biological Chemistry | 2014

Reactive Oxygen Species, AMP-activated Protein Kinase, and the Transcription Cofactor p300 Regulate α-Tubulin Acetyltransferase-1 (αTAT-1/MEC-17)-dependent Microtubule Hyperacetylation during Cell Stress

Rafah Mackeh; Séverine Lorin; Ameetha Ratier; Najet Mejdoubi-Charef; Anita Baillet; Arnaud Bruneel; Ahmed Hamaï; Patrice Codogno; Christian Poüs; Daniel Perdiz

Background: Tubulin acetylation is a hallmark of microtubule stabilization, which may modulate the binding of microtubule-associated proteins. Results: Microtubules are hyperacetylated because of stress-induced cellular signaling upstream of the tubulin acetyltransferase MEC-17/αTAT1. Conclusion: MEC-17/αTAT1 is regulated by p300, reactive oxygen species, and AMP-activated protein kinase. Significance: Microtubule hyperacetylation is important for cell adaptation to stress through autophagy induction and for cell survival. Beyond its presence in stable microtubules, tubulin acetylation can be boosted after UV exposure or after nutrient deprivation, but the mechanisms of microtubule hyperacetylation are still unknown. In this study, we show that this hyperacetylation is a common response to several cellular stresses that involves the stimulation of the major tubulin acetyltransferase MEC-17. We also demonstrate that the acetyltransferase p300 negatively regulates MEC-17 expression and is sequestered on microtubules upon stress. We further show that reactive oxygen species of mitochondrial origin are required for microtubule hyperacetylation by activating the AMP kinase, which in turn mediates MEC-17 phosphorylation upon stress. Finally, we show that preventing microtubule hyperacetylation by knocking down MEC-17 affects cell survival under stress conditions and starvation-induced autophagy, thereby pointing out the importance of this rapid modification as a broad cell response to stress.


Molecular and Cellular Biochemistry | 2002

Post-translational modifications of cardiac tubulin during chronic heart failure in the rat

Souad Belmadani; Christian Poüs; Renée Ventura-Clapier; Rodolphe Fischmeister; Pierre-François Méry

Cytoskeletal reorganization has been shown to participate in cellular remodeling and in the alterations of mechanical function of isolated cardiomyocytes during pressure overload hypertrophy. Post-translational modifications of tubulin towards stabilization of microtubules have also been described in animal models of compensatory hypertrophy, but the status of the microtubules network in end stage heart failure is not clearly established. Using a rat model of congestive heart failure (CHF) induced by aortic banding, we studied the expression of α- and β-tubulin, as well as their post-translational modification and distribution in the soluble and polymerized fraction by immunoblotting. We found an accumulation of α- and β-tubulin protein content specifically in the soluble fraction with no change in the polymerized fraction. Amongst the several variants of α-tubulin examined, only detyrosinated Glu-tubulin and deglutamylated Δ2-tubulin levels were selectively increased during heart failure. Glu-tubulin accumulated in the polymerized fraction while Δ2-tubulin levels were increased in the soluble fraction in CHF hearts. These results show that a profound remodeling of the microtubule network occurs in heart failure. This remodeling suggests an increase in the stability of the microtubule network which is discussed in terms of possible functional consequences.


Journal of Biological Chemistry | 2009

Kinesin-1 Regulates Microtubule Dynamics via a c-Jun N-terminal Kinase-dependent Mechanism

Vanessa Daire; Julien Giustiniani; Ingrid Leroy-Gori; Mélanie Quesnoit; Stéphanie Drevensek; Ariane Dimitrov; Franck Perez; Christian Poüs

In the kinesin family, all the molecular motors that have been implicated in the regulation of microtubule dynamics have been shown to stimulate microtubule depolymerization. Here, we report that kinesin-1 (also known as conventional kinesin or KIF5B) stimulates microtubule elongation and rescues. We show that microtubule-associated kinesin-1 carries the c-Jun N-terminal kinase (JNK) to allow its activation and that microtubule elongation requires JNK activity throughout the microtubule life cycle. We also show that kinesin-1 and JNK promoted microtubule rescues to similar extents. Stimulation of microtubule rescues by the kinesin-1/JNK pathway could not be accounted for by the rescue factor CLIP-170. Indeed only a dual inhibition of kinesin-1/JNK and CLIP-170 completely blocked rescues and led to extensive microtubule loss. We propose that the kinesin-1/JNK signaling pathway is a major regulator of microtubule dynamics in living cells and that it is required with the rescue factor CLIP-170 to allow cells to build their interphase microtubule network.

Collaboration


Dive into the Christian Poüs's collaboration.

Top Co-Authors

Avatar

Franck Perez

PSL Research University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Drechou

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrice Codogno

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge