Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Schröter is active.

Publication


Featured researches published by Christian Schröter.


Current Biology | 2010

Intercellular Coupling Regulates the Period of the Segmentation Clock

Leah Herrgen; Saúl Ares; Luis G. Morelli; Christian Schröter; Frank Jülicher; Andrew C. Oates

BACKGROUND Coupled biological oscillators can tick with the same period. How this collective period is established is a key question in understanding biological clocks. We explore this question in the segmentation clock, a population of coupled cellular oscillators in the vertebrate embryo that sets the rhythm of somitogenesis, the morphological segmentation of the body axis. The oscillating cells of the zebrafish segmentation clock are thought to possess noisy autonomous periods, which are synchronized by intercellular coupling through the Delta-Notch pathway. Here we ask whether Delta-Notch coupling additionally influences the collective period of the segmentation clock. RESULTS Using multiple-embryo time-lapse microscopy, we show that disruption of Delta-Notch intercellular coupling increases the period of zebrafish somitogenesis. Embryonic segment length and the spatial wavelength of oscillating gene expression also increase correspondingly, indicating an increase in the segmentation clocks period. Using a theory based on phase oscillators in which the collective period self-organizes because of time delays in coupling, we estimate the cell-autonomous period, the coupling strength, and the coupling delay from our data. Further supporting the role of coupling delays in the clock, we predict and experimentally confirm an instability resulting from decreased coupling delay time. CONCLUSIONS Synchronization of cells by Delta-Notch coupling regulates the collective period of the segmentation clock. Our identification of the first segmentation clock period mutants is a critical step toward a molecular understanding of temporal control in this system. We propose that collective control of period via delayed coupling may be a general feature of biological clocks.


Developmental Dynamics | 2008

Dynamics of zebrafish somitogenesis.

Christian Schröter; Leah Herrgen; Albert Cardona; Gary J. Brouhard; Benjamin Feldman; Andrew C. Oates

Vertebrate somitogenesis is a rhythmically repeated morphogenetic process. The dependence of somitogenesis dynamics on axial position and temperature has not been investigated systematically in any species. Here we use multiple embryo time‐lapse imaging to precisely estimate somitogenesis period and somite length under various conditions in the zebrafish embryo. Somites form at a constant period along the trunk, but the period gradually increases in the tail. Somite length varies along the axis in a stereotypical manner, with tail somites decreasing in size. Therefore, our measurements prompt important modifications to the steady‐state Clock and Wavefront model: somitogenesis period, somite length, and wavefront velocity all change with axial position. Finally, we show that somitogenesis period changes more than threefold across the standard developmental temperature range, whereas the axial somite length distribution is temperature invariant. This finding indicates that the temperature‐induced change in somitogenesis period exactly compensates for altered axial growth. Developmental Dynamics 237:545–553, 2008.


Hfsp Journal | 2009

Delayed coupling theory of vertebrate segmentation

Luis G. Morelli; Saúl Ares; Leah Herrgen; Christian Schröter; Frank Jülicher; Andrew C. Oates

Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene‐expression across the field of PSM cells. How these spatial patterns, the clocks collective period, and the underlying cellular‐level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clocks collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene‐expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation.


PLOS Biology | 2012

Topology and Dynamics of the Zebrafish Segmentation Clock Core Circuit

Christian Schröter; Saúl Ares; Luis G. Morelli; Alina Isakova; Korneel Hens; Daniele Soroldoni; Martin Gajewski; Frank Jülicher; Sebastian J. Maerkl; Bart Deplancke; Andrew C. Oates

By combining biochemical, embryological, and mathematical approaches, this work uncovers an important role for protein-protein interactions in determining the dynamics of the somite-forming segmentation clock in vertebrates.


Current Biology | 2010

Segment number and axial identity in a segmentation clock period mutant.

Christian Schröter; Andrew C. Oates

A species-specific number of segments is a hallmark of the vertebrate body plan. The first segmental structures in the vertebrate embryo are the somites, which bud sequentially from the growing presomitic mesoderm (PSM). The Clock and Wavefront model for somitogenesis proposes that the total number of somites is determined by the period of an oscillator or clock operating in the PSM and the total duration of PSM growth. Furthermore, the number of oscillations of the segmentation clock has been suggested to regulate the regional identity of segments along the body axis. Here we test these two ideas in a zebrafish mutant in which the segmentation clock is specifically slowed. This reduces segment number as predicted, but hox gene expression and posterior anatomical markers align with lower segmental counts in mutants compared to the wild-type, arguing against an instructive role of the segmentation clock in determining axial identities. Our data therefore suggest that precise control of segmentation clock period in relation to axial growth ensures a species-specific segment number and that during evolution modulating the clocks period through genetic mutations may have been a relevant way to vary segment number independently of axial regionalization.


Development | 2015

FGF/MAPK signaling sets the switching threshold of a bistable circuit controlling cell fate decisions in embryonic stem cells.

Christian Schröter; Pau Rué; Jonathan P Mackenzie; Alfonso Martinez Arias

Intracellular transcriptional regulators and extracellular signaling pathways together regulate the allocation of cell fates during development, but how their molecular activities are integrated to establish the correct proportions of cells with particular fates is not known. Here we study this question in the context of the decision between the epiblast (Epi) and the primitive endoderm (PrE) fate that occurs in the mammalian preimplantation embryo. Using an embryonic stem cell (ESC) model, we discover two successive functions of FGF/MAPK signaling in this decision. First, the pathway needs to be inhibited to make the PrE-like gene expression program accessible for activation by GATA transcription factors in ESCs. In a second step, MAPK signaling levels determine the threshold concentration of GATA factors required for PrE-like differentiation, and thereby control the proportion of cells differentiating along this lineage. Our findings can be explained by a simple mutual repression circuit modulated by FGF/MAPK signaling. This might be a general network architecture to integrate the activity of signal transduction pathways and transcriptional regulators, and serve to balance proportions of cell fates in several contexts. Highlighted article: Quantitative measurements and mathematical modeling reveal the integration of transcription factor activity and extracellular signaling during fate decisions in ESCs.


Development | 2013

A molecular basis for developmental plasticity in early mammalian embryos

Alfonso Martinez Arias; Jennifer Nichols; Christian Schröter

Early mammalian embryos exhibit remarkable plasticity, as highlighted by the ability of separated early blastomeres to produce a whole organism. Recent work in the mouse implicates a network of transcription factors in governing the establishment of the primary embryonic lineages. A combination of genetics and embryology has uncovered the organisation and function of the components of this network, revealing a gradual resolution from ubiquitous to lineage-specific expression through a combination of defined regulatory relationships, spatially organised signalling, and biases from mechanical inputs. Here, we summarise this information, link it to classical embryology and propose a molecular framework for the establishment and regulation of developmental plasticity.


Methods of Molecular Biology | 2009

Multiple embryo time-lapse imaging of zebrafish development

Leah Herrgen; Christian Schröter; Lola Bajard; Andrew C. Oates

Understanding the dynamics of developmental and cellular processes requires documentation of their changes with appropriate temporal and spatial resolution. Furthermore, simultaneous recording from a population of embryos under identical conditions allows statistical estimates of precision and variability to be made. This chapter describes a protocol for time-lapse microscopy of multiple embryos in parallel developing under tightly controlled conditions. This method is currently best suited to follow tissue-scale morphogenetic movements with temporal resolution in the minute range, for hours or even days. Applications of the method include the comparison of the dynamics of a process of interest between groups of wild-type embryos and their mutant siblings or between embryos treated with different chemical compounds. Temperature control allows for the investigation of the temperature dependence of a process of interest.


BMC Developmental Biology | 2015

A loss-of-function and H2B-Venus transcriptional reporter allele for Gata6 in mice.

Laina Freyer; Christian Schröter; Néstor Saiz; Nadine Schrode; Sonja Nowotschin; Alfonso Martinez-Arias; Anna-Katerina Hadjantonakis

BackgroundThe GATA-binding factor 6 (Gata6) gene encodes a zinc finger transcription factor that often functions as a key regulator of lineage specification during development. It is the earliest known marker of the primitive endoderm lineage in the mammalian blastocyst. During gastrulation, GATA6 is expressed in early cardiac mesoderm and definitive endoderm progenitors, and is necessary for development of specific mesoderm and endoderm-derived organs including the heart, liver, and pancreas. Furthermore, reactivation or silencing of the Gata6 locus has been associated with certain types of cancer affecting endodermal organs.ResultsWe have generated a Gata6H2B-Venus knock-in reporter mouse allele for the purpose of labeling GATA6-expressing cells with a bright nuclear-localized fluorescent marker that is suitable for live imaging at single-cell resolution.ConclusionsExpression of the Venus reporter was characterized starting from embryonic stem (ES) cells, through mouse embryos and adult animals. The Venus reporter was not expressed in ES cells, but was activated upon endoderm differentiation. Gata6H2B-Venus/H2B-Venus homozygous embryos did not express GATA6 protein and failed to specify the primitive endoderm in the blastocyst. However, null blastocysts continued to express high levels of Venus in the absence of GATA6 protein, suggesting that early Gata6 transcription is independent of GATA6 protein expression. At early post-implantation stages of embryonic development, there was a strong correlation of Venus with endogenous GATA6 protein in endoderm and mesoderm progenitors, then later in the heart, midgut, and hindgut. However, there were discrepancies in reporter versus endogenous protein expression in certain cells, such as the body wall and endocardium. During organogenesis, detection of Venus in specific organs recapitulated known sites of endogenous GATA6 expression, such as in the lung bud epithelium, liver, pancreas, gall bladder, stomach epithelium, and vascular endothelium. In adults, Venus was observed in the lungs, pancreas, liver, gall bladder, ovaries, uterus, bladder, skin, adrenal glands, small intestine and corpus region of the stomach. Overall, Venus fluorescent protein under regulatory control of the Gata6 locus was expressed at levels that were easily visualized directly and could endure live and time-lapse imaging techniques. Venus is co-expressed with endogenous GATA6 throughout development to adulthood, and should provide an invaluable tool for examining the status of the Gata6 locus during development, as well as its silencing or reactivation in cancer or other disease states.


Stem Cells | 2015

Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells

Claire M Mulvey; Christian Schröter; Laurent Gatto; Duygu Dikicioglu; Işık Barış Fidaner; Andy Christoforou; Michael J. Deery; Lily Ty Cho; Kathy K. Niakan; Alfonso Martinez-Arias; Kathryn S. Lilley

During mammalian preimplantation development, the cells of the blastocysts inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra‐embryonic tissues, respectively. Extra‐embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA‐inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo‐derived XEN cells. Using mass spectrometry‐based quantitative proteomic profiling with multivariate data analysis tools, we reproducibly quantified 2,336 proteins across three biological replicates and have identified clusters of proteins characterized by distinct, dynamic temporal abundance profiles. We first used this approach to highlight novel marker candidates of the pluripotent state and XEN differentiation. Through functional annotation enrichment analysis, we have shown that the downregulation of chromatin‐modifying enzymes, the reorganization of membrane trafficking machinery, and the breakdown of cell–cell adhesion are successive steps of the extra‐embryonic differentiation process. Thus, applying a range of sophisticated clustering approaches to a time‐resolved proteomic dataset has allowed the elucidation of complex biological processes which characterize stem cell differentiation and could establish a general paradigm for the investigation of these processes. Stem Cells 2015;33:2712—2725

Collaboration


Dive into the Christian Schröter's collaboration.

Top Co-Authors

Avatar

Andrew C. Oates

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna-Katerina Hadjantonakis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge