Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Gajewski is active.

Publication


Featured researches published by Martin Gajewski.


Development | 2003

Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish

Martin Gajewski; Dirk Sieger; Burkhard Alt; Christian Leve; Stefan Hans; Christian Wolff; Klaus B. Rohr; Diethard Tautz

Somite formation in vertebrates depends on a molecular oscillator in the presomitic mesoderm (PSM). In order to get a better insight into how oscillatory expression is achieved in the zebrafish Danio rerio, we have analysed the regulation of her1 and her7, two bHLH genes that are co-expressed in the PSM. Using specific morpholino oligonucleotide mediated inhibition and intron probe in situ hybridisation, we find that her7 is required for initiating the expression in the posterior PSM, while her1 is required to propagate the cyclic expression in the intermediate and anterior PSM. Reporter gene constructs with the her1 upstream sequence driving green fluorescent protein (GFP) expression show that separable regulatory regions can be identified that mediate expression in the posterior versus intermediate and anterior PSM. Our results indicate that the cyclic expression is generated at the transcriptional level and that the resulting mRNAs have a very short half-life. A specific degradation signal for her1 mRNA must be located in the 5′-UTR, as this region also destabilises the GFP mRNA such that it mimics the dynamic pattern of the endogenous her1 mRNA. In contrast to the mRNA, GFP protein is stable and we find that all somitic cells express the protein, proving that her1 mRNA is transiently expressed in all cells of the PSM.


Development Genes and Evolution | 1996

LWamides from Cnidaria constitute a novel family of neuropeptides with morphogenetic activity

Martin Gajewski; Thomas Leitz; Jörg Schloßherr; Günter Plickert

Metamorphosin A (MMA) isolated from the anthozoan Anthopleura elegantissima has recently been shown to interfere with developmental control in the colonial hydroid Hydractinia echinata. In order to identify the functional homologue in this species we have cloned cDNAs of the precursor protein from Hydractinia and, for comparison, precursor sequences from two further anthozoans. The deduced preproproteins contain multiple copies of propeptides to be processed into a great variety of novel neuropeptides most of which are N-terminally different from MMA. Original MMA is only contained in the anthozoan precursors. Most of the novel neuropeptides will have the carboxyl terminus LWamide. Therefore, we term this novel neuropeptide family the LWamides. Peptides synthesized according to the precursor sequence of H. echinata and added to planulae trigger metamorphosis. In contrast, none of 11 other known biologically active peptides including carboxamidated neuropeptides were effective. Expression analysis by in situ hybridization and by antibodies against the H. echinata peptide reveals the presence of the gene product in planulae at the proper time and at the due spatial location expected for a natural role in metamorphosis. LWamide transcripts are also observed in nerve cells of primary and adult polyps, suggesting LWamides to be a multifunctional family of neuropeptides.


PLOS Biology | 2012

Topology and Dynamics of the Zebrafish Segmentation Clock Core Circuit

Christian Schröter; Saúl Ares; Luis G. Morelli; Alina Isakova; Korneel Hens; Daniele Soroldoni; Martin Gajewski; Frank Jülicher; Sebastian J. Maerkl; Bart Deplancke; Andrew C. Oates

By combining biochemical, embryological, and mathematical approaches, this work uncovers an important role for protein-protein interactions in determining the dynamics of the somite-forming segmentation clock in vertebrates.


Development Genes and Evolution | 2001

Homologues of c-hairy1 (her9) and lunatic fringe in zebrafish are expressed in the developing central nervous system, but not in the presomitic mesoderm

Christian Leve; Martin Gajewski; Klaus B. Rohr; Diethard Tautz

Abstract. A number of genes that are involved in somitogenesis in vertebrates are cyclically expressed in the presomitic mesoderm. These include homologues of the Drosophila genes fringe and hairy. We have analysed here two genes that belong to these classes in the zebrafish, namely the apparent orthologues of lunatic fringe (l-fng) and of c-hairy1 (called her9). However, unlike the respective mouse and chicken genes, they are not expressed cyclically in the presomitic mesoderm. Instead, both genes are mainly expressed in the central nervous system. her9 is predominantly expressed in the fore- and midbrain, and transiently in the hindbrain. Thus, the previously identified and only very distantly related her1 gene of zebrafish has more similarities to the expression of the c-hairy1 gene than its apparent orthologue her9, indicating that sequence similarity and similarity of function are not necessarily linked in this case. l-fng expression is found in alternating pre-rhombomeres, comparable to the equivalent mouse gene expression and in the anterior compartments of the mature somites, which was also shown for the chicken l-fng gene. The latter expression indicates that it might be involved in boundary definition and cell fate decision processes, rather than in pre-patterning of the somites. Interestingly, a similar role has previously been inferred for the grasshopper homologue of l-fng. This suggests that the function of l-fng in boundary definition of the somites might be ancestral, while its recruitment to the pre-patterning process of the somites might be a derived feature in higher vertebrates.


Development Genes and Evolution | 1997

Automated in situ detection (AISD) of biomolecules

Günter Plickert; Martin Gajewski; Gerd Gehrke; Heinrich Gausepohl; Jörg Schlossherr; Hady Ibrahim

Abstract In order to facilitate in situ detection of biomolecules in large sample series the processing of whole-mount specimens has been automated. A freely programmable liquid handling system is described by which embryos or similar biological materials are processed. Possible applications include in situ hybridization (ISH), immunocytochemistry (ICC) or reporter gene assays. Process times required for the preparation of whole-mount in situ hybridizations in Drosophila, Xenopus, Gallus and in hydroids were – in part – significantly reduced as compared with manual processing. Application of automated in situ detection (AISD) in random screening is demonstrated in hydroids. Potential further applications are discussed.


Mechanisms of Development | 2003

The role of Suppressor of Hairless in Notch mediated signalling during zebrafish somitogenesis

Dirk Sieger; Diethard Tautz; Martin Gajewski

Suppressor of Hairless (Su(H)) codes for a protein that interacts with the intracellular domain of Notch to activate the target genes of the Delta-Notch signalling pathway. We have cloned the zebrafish homologue of Su(H) and have analysed its function by morpholino mediated knockdown. While there are at least four notch and four delta homologues in zebrafish, there appears to be only one complete Su(H) homologue. We have analysed the function of Su(H) in the somitogenesis process and its influence on the expression of notch pathway genes, in particular her1, her7, deltaC and deltaD. The cyclic expression of her1, her7 and deltaC in the presomitic mesoderm is disrupted by the Su(H) knockdown mimicking the expression of these genes in the notch1a mutant deadly seven. deltaD expression is similarly affected by Su(H) knockdown like deltaC but shows in addition an ectopic expression in the developing neural tube. The inactivation of Su(H) in a fss/tbx24 mutant background leads furthermore to a clear breakdown of cyclic her1 and her7 expression, indicating that the Delta-Notch pathway is required for the creation of oscillation and not only for the synchronisation between neighbouring cells. The strongest phenotypes in the Su(H) knockdown embryos show a loss of all somites posterior to the first five to seven ones. This phenotype is stronger than the known amorphic phenotypes for notch1 (des) or deltaD (aei) in zebrafish, but mimicks the knockout phenotype of RBP-Jkappa gene in the mouse, which is the homologue of Su(H). This suggests that there is some functional redundancy among the Notch and Delta genes. This fact that the first five to seven somites are only weakly affected by Su(H) knockdown indicates that additional genetic pathways may be active in the specification of the most anterior somites.


Development Genes and Evolution | 2004

her11 is involved in the somitogenesis clock in zebrafish

Dirk Sieger; Diethard Tautz; Martin Gajewski

Somitogenesis requires an intricate process of pre-patterning, which is driven by an oscillator mechanism consisting of the Delta-Notch pathway and hairy- (h) and Enhancer of split- [E(spl)] related genes. With the aim of unravelling the complex mechanism of somite pre-patterning, we have conducted an extensive search for h/E(spl)-related genes in the third release of the Danio rerio genomic sequence. We identified 14 new h/E(spl) genes and analysed them by in situ hybridisation for their potential role in the somitogenesis process. We describe here the functional analysis of one of these genes, which we have named her11. her11 is a paralogue of her1 and, similar to her1, is arranged in a head to head fashion with another her gene, namely the previously described her5. It shares an expression in the midbrain-hindbrain boundary with her5, but is in addition cyclically expressed in patterns overlapping those of her1 and her7 and complementary to those of hey1. Furthermore it is expressed in the anterior half of the most caudally formed somites. We show that Delta-Notch pathway genes and fused somites (fss) are necessary for the control of her11 expression. However, some aspects of the her11 regulation suggest that at least one additional as yet unknown gene of the Delta-Notch cascade is required to explain its expression. Morpholino-oligonucleotide-mediated knockdown of her11 shows that it is involved in the zebrafish somitogenesis clock via an interaction with her1 and her7. We have also studied the role of hey1 by morpholino injection, but could not find a direct function for this gene, suggesting that it reflects the output of the clock rather than being a core component of the mechanism.


BMC Genomics | 2002

Comparative analysis of somitogenesis related genes of the hairy/Enhancer of split class in Fugu and zebrafish

Martin Gajewski; Chris Voolstra

BackgroundMembers of a class of bHLH transcription factors, namely the hairy (h), Enhancer of split (E(spl)) and hairy-related with YRPW motif (hey) (h/E(spl)/hey) genes are involved in vertebrate somitogenesis and some of them show cycling expression. By sequence comparison, identified orthologues of cycling somitogenesis genes from higher vertebrates do not show an appropriate expression pattern in zebrafish. The zebrafish genomic sequence is not available yet but the genome of Fugu rubripes was recently published. To allow comparative analysis, the currently known Her proteins from zebrafish were used to screen the genomic sequence database of Fugu rubripes.Results20 h/E(spl)/hey-related genes were identified in Fugu, which is twice the number of corresponding zebrafish genes known so far. A novel class of c-Hairy proteins was identified in the genomes of Fugu and Tetraodon. A screen of the human genome database with the Fugu proteins yielded 10 h/E(spl)/hey-related genes. By analysing the upstream sequences of the c-hairy class genes in zebrafish, Fugu and Tetraodon highly similar sequence stretches were identified that harbour Suppressor of hairless paired binding sites (SPS). This motif was also discovered in the upstream sequences of the her1 gene in the examined fish species. Here, the Su(h) sites are separated by longer intervening sequences.ConclusionsOur study indicates that not all her homologues in zebrafish have been isolated. Comparison to the human genome suggests a selective duplication of h/E(spl) genes in pufferfish or loss of members of these genes during evolution to the human lineage.


Development Genes and Evolution | 2006

Comparative analysis of her genes during fish somitogenesis suggests a mouse/chick-like mode of oscillation in medaka

Martin Gajewski; Harun Elmasri; Manuel Girschick; Dirk Sieger; Christoph Winkler

Somitogenesis is the key developmental step, which divides the vertebrate body axis into segmentally repeated structures. It requires an intricate process of pre-patterning, which is driven by an oscillator mechanism consisting of the Delta–Notch pathway and various hairy- and Enhancer of split-related (her) genes. The subset of her genes, which are necessary to set up the segmentation clock, reveal a complex scenario of interactions. To understand which her genes are essential core players in this process, we compared the expression patterns of somitogenesis-relevant her genes in zebrafish and medaka (Oryzias latipes). Most of the respective medaka genes (Ol-her) are duplicated like what has been shown for zebrafish (Dr-her) and pufferfish genes (Fr-her). However, zebrafish genes show some additional copies and significant differences in expression patterns. For the paralogues Dr-her1 and Dr-her11, only one copy exists in the medaka (Ol-her1/11), which combines the expression patterns found for both zebrafish genes. In contrast to Dr-her5, the medaka orthologue appears to play a role in somitogenesis because it is expressed in the presomitic mesoderm (PSM). PSM expression also suggests a role for both Ol-her13 genes, homologues of mouse Hes6 (mHes6), in this process, which would be consistent with a conserved mHes6 homologue gear in the segmentation clock exclusively in lower vertebrates. Members of the mHes5 homologue group seem to be involved in somite formation in all vertebrates (e.g. Dr- and Ol-her12), although different paralogues are additionally recruited in zebrafish (e.g. Dr-her15) and medaka (e.g. Ol-her4). We found that the linkage between duplicates is strongly conserved between pufferfish and medaka and less well conserved in zebrafish. Nevertheless, linkage and orientation of several her duplicates are identical in all three species. Therefore, small-scale duplications must have happened before whole genome duplication occurred in a fish ancestor. Expression of multiple stripes in the intermediate PSM, characteristic for the zebrafish orthologues, is absent in all somitogenesis-related her genes of the medaka. In fact, the expression mode of Ol-her1/11 and Ol-her5 indicates dynamism similar to the hairy clock genes in chicken and mouse. This suggests that Danio rerio shows a rather derived clock mode when compared to other fish species and amniotes or that, alternatively, the clock mode evolved independently in zebrafish, medaka and mouse or chicken.


Development | 2013

The elongation rate of RNA polymerase II in zebrafish and its significance in the somite segmentation clock

Anja Hanisch; Maxine Holder; Suma Choorapoikayil; Martin Gajewski; Ertuǧrul M. Özbudak; Julian Lewis

A gene expression oscillator called the segmentation clock controls somite segmentation in the vertebrate embryo. In zebrafish, the oscillatory transcriptional repressor genes her1 and her7 are crucial for genesis of the oscillations, which are thought to arise from negative autoregulation of these genes. The period of oscillation is predicted to depend on delays in the negative-feedback loop, including, most importantly, the transcriptional delay – the time taken to make each molecule of her1 or her7 mRNA. her1 and her7 operate in parallel. Loss of both gene functions, or mutation of her1 combined with knockdown of Hes6, which we show to be a binding partner of Her7, disrupts segmentation drastically. However, mutants in which only her1 or her7 is functional show only mild segmentation defects and their oscillations have almost identical periods. This is unexpected because the her1 and her7 genes differ greatly in length. We use transgenic zebrafish to measure the RNA polymerase II elongation rate, for the first time, in the intact embryo. This rate is unexpectedly rapid, at 4.8 kb/minute at 28.5°C, implying that, for both genes, the time taken for transcript elongation is insignificant compared with other sources of delay, explaining why the mutants have similar clock periods. Our computational model shows how loss of her1 or her7 can allow oscillations to continue with unchanged period but with reduced amplitude and impaired synchrony, as manifested in the in situ hybridisation patterns of the single mutants.

Collaboration


Dive into the Martin Gajewski's collaboration.

Top Co-Authors

Avatar

Dirk Sieger

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Winkler

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Andrew C. Oates

University College London

View shared research outputs
Top Co-Authors

Avatar

Klaus B. Rohr

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge