Christian Skonberg
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Skonberg.
Biochimica et Biophysica Acta | 2008
Andreas Artmann; Gitte Petersen; Lars Hellgren; Julie Boberg; Christian Skonberg; Christine Nellemann; Steen Honoré Hansen; Harald S. Hansen
Endocannabinoids and N-acylethanolamines are lipid mediators regulating a wide range of biological functions including food intake. We investigated short-term effects of feeding rats five different dietary fats (palm oil (PO), olive oil (OA), safflower oil (LA), fish oil (FO) and arachidonic acid (AA)) on tissue levels of 2-arachidonoylglycerol, anandamide, oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide, linoleoylethanolamide, eicosapentaenoylethanolamide, docosahexaenoylethanolamide and tissue fatty acid composition. The LA-diet increased linoleoylethanolamide and linoleic acid in brain, jejunum and liver. The OA-diet increased brain levels of anandamide and oleoylethanolamide (not 2-arachidonoylglycerol) without changing tissue fatty acid composition. The same diet increased oleoylethanolamide in liver. All five dietary fats decreased oleoylethanolamide in jejunum without changing levels of anandamide, suggesting that dietary fat may have an orexigenic effect. The AA-diet increased anandamide and 2-arachidonoylglycerol in jejunum without effect on liver. The FO-diet decreased liver levels of all N-acylethanolamines (except eicosapentaenoylethanolamide and docosahexaenoylethanolamide) with similar changes in precursor lipids. The AA-diet and FO-diet had no effect on N-acylethanolamines, endocannabinoids or precursor lipids in brain. All N-acylethanolamines activated PPAR-alpha. In conclusion, short-term feeding of diets resembling human diets (Mediterranean diet high in monounsaturated fat, diet high in saturated fat, or diet high in polyunsaturated fat) can affect tissue levels of endocannabinoids and N-acylethanolamines.
Expert Opinion on Drug Metabolism & Toxicology | 2008
Christian Skonberg; Jrgen Olsen; Kim Grimstrup Madsen; Steen Honor Hansen; Mark P. Grillo
Background: Carboxylic acids constitute a large and heterogeneous class of both endogenous and xenobiotic compounds. A number of carboxylic acid drugs have been associated with adverse reactions, linked to the metabolic activation of the carboxylic acid moiety of the compounds, i.e., formation of acyl-glucuronides and acyl-CoA thioesters. Objective: The objective is to give an overview of the current knowledge on metabolic activation of carboxylic acids and how such metabolites may play a role in adverse reactions and toxicity. Methods: Literature concerning the formation and disposition of acyl glucuronides and acyl-CoA thioesters was searched. Also included were papers on the chemical reactivity of acyl glutathione-thioesters, and literature concerning possible links between metabolic activation of carboxylic acids and reported cellular and clinical effects. Results/conclusion: This review demonstrates that metabolites of carboxylic acid drugs must be considered chemically reactive, and that the current knowledge about metabolic activation of this compound class can be a good starting-point for further studies on the consequences of chemically reactive metabolites.
Analytical Chemistry | 2011
Nickolaj Jacob Petersen; Sunniva Taule Foss; Henrik Jensen; Steen Honoré Hansen; Christian Skonberg; Detlef Snakenborg; Jörg P. Kutter; Stig Pedersen-Bjergaard
Electro membrane extraction was demonstrated in a microfluidic device. The device was composed of a 25 μm thick porous polypropylene membrane bonded between two poly(methyl methacrylate) (PMMA) substrates, each having 50 μm deep channel structures facing the membrane. The supported liquid membrane (SLM) consisted of 2-nitrophenyl octyl ether (NPOE) immobilized in the pores of the membrane. The driving force for the extraction was a 15 V direct current (DC) electrical potential applied across the SLM. Samples containing the basic drugs pethidine, nortriptyline, methadone, haloperidol, loperamide, and amitriptyline were used to characterize the system. Extraction recoveries were typically in the range of 65-86% for the different analytes when the device was operated with a sample flow of 2.0 μL/min and an acceptor flow of 1.0 μL/min. With the sample flow at 9.0 μL/min and the acceptor flow at 0.0 μL/min, enrichment factors exceeding 75 were obtained during 12 min of operation from a total sample volume of only 108 μL. The on-chip electro membrane system was coupled online to electrospray ionization mass spectrometry and used to monitor online and real-time metabolism of amitriptyline by rat liver microsomes.
Chemical Research in Toxicology | 2008
Kim Grimstrup Madsen; Gunnar Grönberg; Christian Skonberg; Ulrik Jurva; Steen H. Hansen; Jørgen Olsen
Troglitazone (TGZ) was developed for the treatment of type 2 diabetes but was withdrawn from the market due to hepatotoxicity. The formation of reactive metabolites has been associated with the observed hepatotoxicity. Such reactive metabolites have been proposed to be formed via three different mechanisms. One of the proposed mechanisms involves the oxidation of the chromane moiety of TGZ to a reactive o-quinone methide. The two other mechanisms involve metabolic activation of the thiazolidinedione moiety of TGZ. In the present study, it is shown that electrochemical oxidations can be used to generate a reactive metabolite of TGZ, which can be trapped by GSH or N-acetylcysteine. From incubations of TGZ with rat and human liver microsomes in the presence of either GSH or N-acetylcysteine, it was shown that similar conjugates were formed in vitro as formed from electrochemical oxidations of TGZ. One- and two-dimensional NMR studies of the troglitazone- S-( N-acetyl)cysteine conjugate revealed that N-acetylcysteine was attached to a benzylic carbon in the chromane moiety, showing that the conjugate was formed via a reaction between the o-quinone methide of TGZ and N-acetylcysteine. From electrochemical oxidations of rosiglitazone, pioglitazone, and ciglitazone in the presence of GSH, no GSH conjugates could be identified. These three compounds all contain a thiazolidinedione moiety. In conclusion, it has been shown that the primary reactive metabolite of TGZ formed from electrochemical oxidation was the o-quinone methide, and this metabolite was similar to what was observed to be the primary reaction product in human and rat liver microsomes.
Chemical Research in Toxicology | 2011
Line R. Olsen; Mark P. Grillo; Christian Skonberg
Aqueous kava root preparations have been consumed in the South Pacific as an apparently safe ceremonial and cultural drink for centuries. However, several reports of hepatotoxicity have been linked to the consumption of kava extracts in Western countries, where mainly ethanolic or acetonic extracts are used. The mechanism of toxicity has not been established, although several theories have been put forward. The composition of the major constituents, the kava lactones, varies according to preparation method and species of kava plant, and thus, the toxicity of the individual lactones has been tested in order to establish whether a single lactone or a certain composition of lactones may be responsible for the increased prevalence of kava-induced hepatotoxicity in Western countries. However, no such conclusion has been made on the basis of current data. Inhibition or induction of the major metabolizing enzymes, which might result in drug interactions, has also gained attention, but ambiguous results have been reported. On the basis of the chemical structures of kava constituents, the formation of reactive metabolites has also been suggested as an explanation of toxicity. Furthermore, skin rash is a side effect in kava consumers, which may be indicative of the formation of reactive metabolites and covalent binding to skin proteins leading to immune-mediated responses. Reactive metabolites of kava lactones have been identified in vitro as glutathione (GSH) conjugates and in vivo as mercapturates excreted in urine. Addition of GSH to kava extracts has been shown to reduce cytotoxicity in vitro, which suggests the presence of inherently reactive constituents. Only a few studies have investigated the toxicity of the minor constituents present in kava extract, such as pipermethystine and the flavokavains, where some have been shown to display higher in vitro cytotoxicity than the lactones. To date, there remains no indisputable reason for the increased prevalence of kava-induced hepatotoxicity in Western countries.
Journal of Biological Chemistry | 2009
Christopher J. Armishaw; Anders A. Jensen; Thomas Balle; Richard J. Clark; Kasper Harpsøe; Christian Skonberg; Tommy Liljefors; Kristian Strømgaard
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that belong to the superfamily of Cys loop receptors. Valuable insight into the orthosteric ligand binding to nAChRs in recent years has been obtained from the crystal structures of acetylcholine-binding proteins (AChBPs) that share significant sequence homology with the amino-terminal domains of the nAChRs. α-Conotoxins, which are isolated from the venom of carnivorous marine snails, selectively inhibit the signaling of neuronal nAChR subtypes. Co-crystal structures of α-conotoxins in complex with AChBP show that the side chain of a highly conserved proline residue in these toxins is oriented toward the hydrophobic binding pocket in the AChBP but does not have direct interactions with this pocket. In this study, we have designed and synthesized analogues of α-conotoxins ImI and PnIA[A10L], by introducing a range of substituents on the Pro6 residue in these toxins to probe the importance of this residue for their binding to the nAChRs. Pharmacological characterization of the toxin analogues at the α7 nAChR shows that although polar and charged groups on Pro6 result in analogues with significantly reduced antagonistic activities, analogues with aromatic and hydrophobic substituents in the Pro6 position exhibit moderate activity at the receptor. Interestingly, introduction of a 5-(R)-phenyl substituent at Pro6 in α-conotoxin ImI gives rise to a conotoxin analogue with a significantly higher binding affinity and antagonistic activity at the α7 nAChR than those exhibited by the native conotoxin.Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that belong to the superfamily of Cys loop receptors. Valuable insight into the orthosteric ligand binding to nAChRs in recent years has been obtained from the crystal structures of acetylcholine-binding proteins (AChBPs) that share significant sequence homology with the amino-terminal domains of the nAChRs. alpha-Conotoxins, which are isolated from the venom of carnivorous marine snails, selectively inhibit the signaling of neuronal nAChR subtypes. Co-crystal structures of alpha-conotoxins in complex with AChBP show that the side chain of a highly conserved proline residue in these toxins is oriented toward the hydrophobic binding pocket in the AChBP but does not have direct interactions with this pocket. In this study, we have designed and synthesized analogues of alpha-conotoxins ImI and PnIA[A10L], by introducing a range of substituents on the Pro(6) residue in these toxins to probe the importance of this residue for their binding to the nAChRs. Pharmacological characterization of the toxin analogues at the alpha(7) nAChR shows that although polar and charged groups on Pro(6) result in analogues with significantly reduced antagonistic activities, analogues with aromatic and hydrophobic substituents in the Pro(6) position exhibit moderate activity at the receptor. Interestingly, introduction of a 5-(R)-phenyl substituent at Pro(6) in alpha-conotoxin ImI gives rise to a conotoxin analogue with a significantly higher binding affinity and antagonistic activity at the alpha(7) nAChR than those exhibited by the native conotoxin.
Drug Metabolism and Disposition | 2007
Jørgen Olsen; Chunze Li; Christian Skonberg; Inga Bjørnsdottir; Ulrik Sidenius; Leslie Z. Benet; Steen Honoré Hansen
Carboxylic acids may be metabolized to acyl glucuronides and acyl-coenzyme A thioesters (acyl-CoAs), which are reactive metabolites capable of reacting with proteins in vivo. In this study, the metabolic activation of tolmetin (Tol) to reactive metabolites and the subsequent formation of Tol-protein adducts in the liver were studied in rats. Two hours after dose administration (100 mg/kg i.p.), tolmetin acyl-CoA (Tol-CoA) was identified by liquid chromatography-tandem mass spectrometry in liver homogenates. Similarly, the acyl-CoA-dependent metabolites tolmetin-taurine conjugate (Tol-Tau) and tolmetin-acyl carnitine ester (Tol-Car) were identified in rat livers. In a rat bile study (100 mg/kg i.p.), the S-acyl glutathione thioester conjugate was identified, providing further evidence of the formation of reactive metabolites such as Tol-CoA or Tol-acyl glucuronide (Tol-O-G), capable of acylating nucleophilic functional groups. Three rats were treated with clofibric acid (150 mg/kg/day i.p. for 7 days) before dose administration of Tol. This resulted in an increase in covalent binding to liver proteins from 0.9 nmol/g liver in control rats to 4.2 nmol/g liver in clofibric acid-treated rats. Similarly, levels of Tol-CoA increased from 0.6 nmol/g to 4.4 nmol/g liver after pretreatment with clofibric acid, whereas the formation of Tol-O-G and Tol-Tau was unaffected by clofibric acid treatment. However, Tol-Car levels increased from 0.08 to 0.64 nmol/g after clofibric acid treatment. Collectively, these results confirm that Tol-CoA is formed in vivo in the rat and that this metabolite can have important consequences in terms of covalent binding to liver proteins.
Journal of Lipid Research | 2010
Christian Skonberg; Andreas Artmann; Claus Cornett; Steen Honoré Hansen; Harald S. Hansen
N-acylethanolamines (NAEs) are a group of lipid mediators synthesized in response to a number of physiological and pathological stimuli. Because of the low tissue concentrations of NAEs, analyses often include liquid extraction followed by solid-phase extraction and subsequent quantitation by LC/MS or GC/MS. Reported levels of NAEs vary considerably, however, and often no explanation is given for these discrepancies. Brought on by difficulties encountered during method development, the effects of using four different brands of silica-containing solid phase extraction (SPE) columns and five different brands of chloroform for sample preparation were investigated. Considerable variation in the retention and recoveries of seven NAEs and 2-arachidonoylglycerol existed between the SPE columns. Furthermore, it was found that some chloroforms contained quantifiable amounts of N-palmitoylethanolamine and N-stearoylethanolamine. Finally, it was found that use of one of the chloroforms resulted in a loss of N-oleoylethanolamine from solution due to addition of chlorine to the ω-9 bond. The identity of this reaction product was confirmed by LC-MS/MS and NMR. It is recommended that these aspects of sample preparation and analysis should be thoroughly validated during method development and the relevant information on specific brands used be reported in future communications in order to better estimate the validity of reported quantitative data.
Journal of Analytical Atomic Spectrometry | 2009
Charlotte Gabel-Jensen; Jacob Odgaard; Christian Skonberg; Lassina Badolo; Bente Gammelgaard
The metabolism of methylseleninic acid in isolated rat hepatocytes was investigated. Selenium containing metabolites excreted from the cells were detected in the supernatant of the incubation sample by LC-ICP-MS. After pre-treatment of the supernatant by preparative chromatography and pre-concentration by lyophilisation, a major metabolite was identified by molecular mass spectrometry as Se-methylselenocysteine by LC-ESI-MS, MS2 and MS3 and a minor metabolite was identified as selenomethionine by LC-ESI-MS2 and MS3 and LC-ESI-MS2(SRM). This is the first time these metabolites have been identified in hepatocytes. Complementary data from ion trap and triple quadrupole MS instruments provided solid proof of metabolite identities. A time course study showed that S-(methylseleno)cysteine and S-(methylseleno)glutathione were intermediates in the formation of the major metabolite. It is questioned if methylseleninic acid is a relevant model compound for methylated Se-amino acids in vitro.
Fundamental & Clinical Pharmacology | 2009
Petrine Wellendorph; Signe Høg; Christian Skonberg; Hans Bräuner-Osborne
γ‐Hydroxybutyric acid (GHB) is a proposed neurotransmitter or neuromodulator with a yet unresolved mechanism of action. GHB binds to both specific high‐affinity GHB binding sites and to γ‐aminobutyric acid subtype B (GABAB) receptors in the brain. To separate specific GHB effects from GABAB receptor effects, it is imperative to develop GHB selective and potent compounds. We generated the compound, 4‐(biphen‐4‐yl)‐4‐hydroxybutyric acid, which is the 4‐hydroxyl analogue of the non‐steroidal anti‐inflammatory drug (NSAID) fenbufen (referred to as γ‐hydroxyfenbufen). When measured in a rat brain homogenate [3H]NCS‐382 binding assay, γ‐hydroxyfenbufen inhibited [3H]NCS‐382 binding with a 10‐fold higher affinity than GHB (Ki 0.44 μm), thus establishing it as a novel lead structure. The active metabolite of fenbufen, 4‐biphenylacetic acid inhibited [3H]NCS‐382 binding with a twofold higher affinity than GHB. Measuring the affinities of structurally related NSAIDs for the [3H]NCS‐382 site identified diclofenac, a clinically relevant NSAID (Voltaren®, Diclon®) of the phenylacetic acid (PAA) type, as a GHB ligand (Ki value of 5.1 μm). Other non‐NSAID PAAs also exhibited affinities similar to GHB. Our data raise the interesting possibility that the widely used over‐the‐counter drug compound, diclofenac, might affect GHB binding at relevant clinical dosages. Furthermore, the identification of PAAs as GHB ligands supplies new information about the structural preferences of the GHB ligand‐binding site.