Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Stehlik is active.

Publication


Featured researches published by Christian Stehlik.


Immunity | 2012

An NLRP7-Containing Inflammasome Mediates Recognition of Microbial Lipopeptides in Human Macrophages

Sonal Khare; Andrea Dorfleutner; Nicole B. Bryan; Chawon Yun; Alexander D. Radian; Lúcia Maria Vieira de Almeida; Yon Rojanasakul; Christian Stehlik

Cytosolic pathogen- and damage-associated molecular patterns are sensed by pattern recognition receptors, including members of the nucleotide-binding domain and leucine-rich repeat-containing gene family (NLR), which cause inflammasome assembly and caspase-1 activation to promote maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and induction of pyroptosis. However, the contribution of most of the NLRs to innate immunity, host defense, and inflammasome activation and their specific agonists are still unknown. Here we describe identification and characterization of an NLRP7 inflammasome in human macrophages, which is induced in response to microbial acylated lipopeptides. Activation of NLRP7 promoted ASC-dependent caspase-1 activation, IL-1β and IL-18 maturation, and restriction of intracellular bacterial replication, but not caspase-1-independent secretion of the proinflammatory cytokines IL-6 and tumor necrosis factor-α. Our study therefore increases our currently limited understanding of NLR activation, inflammasome assembly, and maturation of IL-1β and IL-18 in human macrophages.


Journal of Immunology | 2003

Apoptosis-Associated Speck-Like Protein Containing a Caspase Recruitment Domain Is a Regulator of Procaspase-1 Activation

Christian Stehlik; Sug Hyung Lee; Andrea Dorfleutner; Angela Stassinopoulos; Junji Sagara; John C. Reed

Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/target of methylation-induced silencing/PYCARD represents one of only two proteins encoded in the human genome that contains a caspase recruitment domain (CARD) together with a pyrin, AIM, ASC, and death domain-like (PAAD)/PYRIN/DAPIN domain. CARDs regulate caspase family proteases. We show here that ASC binds by its CARD to procaspase-1 and to adapter proteins involved in caspase-1 activation, thereby regulating cytokine pro-IL-1β activation by this protease in THP-1 monocytes. ASC enhances IL-1β secretion into the cell culture supernatants, at low concentrations, while suppressing at high concentrations. When expressed in HEK293 cells, ASC interferes with Cardiak/Rip2/Rick-mediated oligomerization of procaspase-1 and suppresses activation this protease, as measured by protease activity assays. Moreover, ASC also recruits procaspase-1 into ASC-formed cytosolic specks, separating it from Cardiak. We also show that expression of the PAAD/PYRIN family proteins pyrin or cryopyrin/PYPAF1/NALP3 individually inhibits IL-1β secretion but that coexpression of ASC with these proteins results in enhanced IL-1β secretion. However, expression of ASC uniformly interferes with caspase-1 activation and IL-1β secretion induced by proinflammatory stimuli such as LPS and TNF, suggesting pathway competition. Moreover, LPS and TNF induce increases in ASC mRNA and protein expression in cells of myeloid/monocytic origin, revealing another level of cross-talk of cytokine-signaling pathways with the ASC-controlled pathway. Thus, our results suggest a complex interplay of the bipartite adapter protein ASC with PAAD/PYRIN family proteins, LPS (Toll family receptors), and TNF in the regulation of procaspase-1 activation, cytokine production, and control of inflammatory responses.


Journal of Biological Chemistry | 2006

S-Nitrosylation of Bcl-2 Inhibits Its Ubiquitin-Proteasomal Degradation A NOVEL ANTIAPOPTOTIC MECHANISM THAT SUPPRESSES APOPTOSIS

Neelam Azad; Val Vallyathan; Liying Wang; Vimon Tantishaiyakul; Christian Stehlik; Stephen S. Leonard; Yon Rojanasakul

Bcl-2 is a key apoptosis regulatory protein of the mitochondrial death pathway whose function is dependent on its expression levels. Although Bcl-2 expression is controlled by various mechanisms, post-translational modifications, such as ubiquitination and proteasomal degradation, have emerged as important regulators of Bcl-2 function. However, the underlying mechanisms of this regulation are unclear. We report here that Bcl-2 undergoes S-nitrosylation by endogenous nitric oxide (NO) in response to multiple apoptotic mediators and that this modification inhibits ubiquitin-proteasomal degradation of Bcl-2. Inhibition of NO production by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and by NO synthase inhibitor aminoguanidine effectively inhibited S-nitrosylation of Bcl-2, increased its ubiquitination, and promoted apoptotic cell death induced by chromium (VI). In contrast, the NO donors dipropylenetriamine NONOate and sodium nitroprusside showed opposite effects. The effect of NO on Bcl-2 stability was shown to be independent of its dephosphorylation. Mutational analysis of Bcl-2 further showed that the two cysteine residues of Bcl-2 (Cys158 and Cys229) are important in the S-nitrosylation process and that mutations of these cysteines completely inhibited Bcl-2 S-nitrosylation. Treatment of the cells with other stress inducers, including Fas ligand and buthionine sulfoxide, also induced Bcl-2 S-nitrosylation, suggesting that this is a general phenomenon that regulates Bcl-2 stability and function under various stress conditions. These findings indicate a novel function of NO and its regulation of Bcl-2, which provides a key mechanism for the control of apoptotic cell death and cancer development.


Journal of Immunology | 2009

Activation of Inflammasomes Requires Intracellular Redistribution of the Apoptotic Speck-Like Protein Containing a Caspase Recruitment Domain

Nicole B. Bryan; Andrea Dorfleutner; Yon Rojanasakul; Christian Stehlik

Activation of caspase 1 is essential for the maturation and release of IL-1β and IL-18 and occurs in multiprotein complexes, referred to as inflammasomes. The apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is the essential adaptor protein for recruiting pro-caspase 1 into inflammasomes, and consistently gene ablation of ASC abolishes caspase 1 activation and secretion of IL-1β and IL-18. However, distribution of endogenous ASC has not yet been examined in detail. In the present study, we demonstrated that ASC localized primarily to the nucleus in resting human monocytes/macrophages. Upon pathogen infection, ASC rapidly redistributed to the cytosol, followed by assembly of perinuclear aggregates, containing several inflammasome components, including caspase 1 and Nod-like receptors. Prevention of ASC cytosolic redistribution completely abolished pathogen-induced inflammasome activity, which affirmed that cytosolic localization of ASC is essential for inflammasome function. Thus, our study characterized a novel mechanism of inflammasome regulation in host defense.


Biochemical Journal | 2003

The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation.

Christian Stehlik; Maryla Krajewska; Kate Welsh; Stanislaw Krajewski; Adam Godzik; John C. Reed

Proteins containing PAAD [pyrin, AIM (absent-in-melanoma), ASC [apoptosis-associated speck-like protein containing a CARD (caspase-recruitment domain)] and DD (death domain)-like] (PYRIN, DAPIN) domains are involved in innate immunity, regulating pathways leading to nuclear-factor-kappa B (NF-kappa B) and pro-caspase-1 activation. Many PAAD-family proteins have structures reminiscent of Nod-1, a putative intracellular sensor of lipopolysaccharide. Hereditary mutations in some of the PAAD-family genes are associated with auto-inflammatory diseases. Several of these proteins utilize the bipartite PAAD- and CARD-containing adapter protein ASC/TMS-1 (target of methylation-induced silencing) for linking to downstream signalling pathways. In the present paper, we describe characterization of human PAAD-only protein-1 (POP1)/ASC2, which is highly homologous with the PAAD domain of ASC, and which probably originated by gene duplication on chromosome 16. We demonstrate that POP1/ASC2 associates with ASC via PAAD-PAAD interactions and modulates NF-kappa B and pro-caspase-1 regulation by this adapter protein. In gene transfer experiments, POP1/ASC2 suppressed cytokine-mediated NF-kappa B activation similar to other PAAD-family proteins previously tested. Immunohistochemical studies showed expression of POP1/ASC2 predominantly in macrophages and granulocytes. We propose that POP1/ASC2 functions as a modulator of multidomain PAAD-containing proteins involved in NF-kappa B and pro-caspase-1 activation and innate immunity.


Journal of Immunology | 2007

COPs and POPs: Modulators of Inflammasome Activity

Christian Stehlik; Andrea Dorfleutner

Inflammasomes represent molecular platforms for the activation of inflammatory caspases and are essential for processing and secretion of the inflammatory cytokines IL-1β and IL-18. Multiple key proteins of inflammasomes contain caspase recruitment domains (CARDs) or pyrin domains (PYDs). Dissecting CARD- and PYD-mediated interactions substantially improved our understanding of the mechanisms by which these protein platforms are activated and emphasized their essential role during the inflammatory cytokine response. However, their precise regulation is still poorly understood. A family of small proteins that are composed of either a CARD or a PYD only emerged as important inflammasome regulators. These CARD-only proteins (COPs) and PYD-only proteins (POPs) function as endogenous dominant negative proteins that modulate the activity of inflammasomes in response to pathogen infection and tissue destruction. In this review we will summarize the most recent advances in the regulation of inflammasomes and highlight their importance for immunity and inflammatory disease.


Cancer Research | 2006

Nitric Oxide Regulates Cell Sensitivity to Cisplatin-Induced Apoptosis through S-Nitrosylation and Inhibition of Bcl-2 Ubiquitination

Pithi Chanvorachote; Ubonthip Nimmannit; Christian Stehlik; Liying Wang; Bing-Hua Jiang; Boonsri Ongpipatanakul; Yon Rojanasakul

Cisplatin is a potent cytotoxic agent commonly used for the treatment of solid tumors. However, tumor cell-acquired resistance to cisplatin-induced apoptosis is a major limitation for efficient therapy, as frequently observed in human lung cancer. Nitric oxide (NO) is a key regulator of apoptosis, but its role in cisplatin-induced cell death and the underlying mechanism are largely unknown. Previous studies indicate increased NO synthase activity and elevated NO production in lung carcinomas, which correlate with the incidence of chemotherapeutic resistance. Here, we show that NO impairs the apoptotic function of cells and increases their resistance to cisplatin-induced cell death in human lung carcinoma H-460 cells. The NO donors sodium nitroprusside and dipropylenetriamine NONOate were able to inhibit cisplatin-induced cell death, whereas the NO inhibitors aminoguanidine and 2-(4-carboxyphenyl)-4,4,5,5-tetra-methylimidazoline-1-oxyl-3-oxide had opposite effect. Cisplatin resistance in H-460 cells is mediated by Bcl-2, and NO up-regulates its expression by preventing the degradation of Bcl-2 via ubiquitin-proteasome pathway. Cisplatin-induced generation of reactive oxygen species causes dephosphorylation and degradation of Bcl-2. In contrast, generation of NO has no effect on Bcl-2 phosphorylation but induces S-nitrosylation of the protein, which inhibits its ubiquitination and subsequent proteasomal degradation. These findings indicate a novel pathway for NO regulation of Bcl-2, which provides a key mechanism for cisplatin resistance and its potential modulation for improved cancer chemotherapy.


Journal of Biological Chemistry | 2005

Nitric Oxide Negatively Regulates Fas CD95-induced Apoptosis through Inhibition of Ubiquitin-Proteasome-mediated Degradation of FLICE Inhibitory Protein

Pithi Chanvorachote; Ubonthip Nimmannit; Liying Wang; Christian Stehlik; Bin Lu; Neelam Azad; Yon Rojanasakul

Stimulation of cell surface Fas (CD95) results in recruitment of cytoplasmic proteins and activation of caspase-8, which in turn activates downstream effector caspases leading to programmed cell death. Nitric oxide (NO) plays a key role in the regulation of apoptosis, but its role in Fas-induced cell death and the underlying mechanism are largely unknown. Here we show that stimulation of the Fas receptor by its ligand (FasL) results in rapid generation of NO and concomitant decrease in cellular FLICE inhibitory protein (FLIP) expression without significant effect on Fas and Fas-associated death domain (FADD) adapter protein levels. FLIP down-regulation as well as caspase-8 activation and apoptosis induced by FasL were all inhibited by the NO-liberating agent sodium nitroprusside and dipropylenetriamine NONOate, whereas the NO synthase inhibitor aminoguanidine and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO) had opposite effects, indicating an anti-apoptotic role of NO in the Fas signaling process. FasL-induced down-regulation of FLIP is mediated by a ubiquitin-proteasome pathway that is negatively regulated by NO. S-nitrosylation of FLIP is an important mechanism rendering FLIP resistant to ubiquitination and proteasomal degradation by FasL. Deletion analysis shows that the caspase-like domain of FLIP is a key target for S-nitrosylation by NO, and mutations of its cysteine 254 and cysteine 259 residues completely inhibit S-nitrosylation, leading to increased ubiquitination and proteasomal degradation of FLIP. These findings indicate a novel pathway for NO regulation of FLIP that provides a key mechanism for apoptosis regulation and a potential new target for intervention in death receptor-associated diseases.


Journal of Experimental Medicine | 2004

The PYRIN Connection Novel Players in Innate Immunity and Inflammation

Christian Stehlik; John C. Reed

Periodic fever syndromes (PFSs) comprise a subset of the hereditary autoinflammatory disorders that are defined by recurrent self-resolving attacks of systemic inflammatory reactions in the absence of infection or autoimmunity. Recent advances have led to the discovery that members of a new family of genes, the PYRIN family, account for several hereditary PFSs. Here we discuss new insights into the function of PYRIN proteins and the molecular basis of PFSs.


Journal of Biological Chemistry | 2002

A Novel PAAD-containing Protein That Modulates NF-κB Induction by Cytokines Tumor Necrosis Factor-α and Interleukin-1β

Loredana Fiorentino; Christian Stehlik; Vasco Oliveira; Maria Eugenia Ariza; Adam Godzik; John C. Reed

PAAD domains are found in diverse proteins of unknown function and are structurally related to a superfamily of protein interaction modules that includes death domains, death effector domains, and Caspase activation and recruitment domains. Using bioinformatics strategies, cDNAs were identified that encode a novel protein of 110 kDa containing a PAAD domain followed by a putative nucleotide-binding (NACHT) domain and several leucine-rich repeat domains. This protein thus resembles Cryopyrin, a protein implicated in hereditary hyperinflammation syndromes, and was termed PAN2 for PAAD andNACHT-containing protein 2. When expressed in HEK293 cells, PAN2 suppressed NF-κB induction by the cytokines tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β), suggesting that this protein operates at a point of convergence in these two cytokine signaling pathways. This PAN2-mediated suppression of NF-κB was evident both in reporter gene assays that measured NF-κB transcriptional activity and electromobility shift assays that measured NF-κB DNA binding activity. PAN2 also suppressed NF-κB induction resulting from overexpression of several adapter proteins and protein kinases involved in the TNF or IL-1 receptor signal transduction, including TRAF2, TRAF6, RIP, IRAK2, and NF-κB-inducing kinase as well as the IκB kinases IKKα and IKKβ. PAN2 also inhibited the cytokine-mediated activation of IKKα and IKKβ as measured byin vitro kinase assays. Furthermore, PAN2 association with IKKα was demonstrated by co-immunoprecipitation assays, suggesting a direct effect on the IKK complex. These observations suggest a role for PAN2 in modulating NF-κB activity in cells, thus providing the insights into the potential functions of PAAD family proteins and their roles in controlling inflammatory responses.

Collaboration


Dive into the Christian Stehlik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liying Wang

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Sonal Khare

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lúcia Maria Vieira de Almeida

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Rojo Ratsimandresy

Conservatoire national des arts et métiers

View shared research outputs
Researchain Logo
Decentralizing Knowledge