Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neelam Azad is active.

Publication


Featured researches published by Neelam Azad.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2008

Inflammation and Lung Cancer: Roles of Reactive Oxygen/Nitrogen Species

Neelam Azad; Yon Rojanasakul; Val Vallyathan

The lung is a highly specialized organ that facilitates uptake of oxygen and release of carbon dioxide. Due to its unique structure providing enormous surface area to outside ambient air, it is vulnerable to numerous pathogens, pollutants, oxidants, gases, and toxicants that are inhaled continuously from air, which makes the lung susceptible to varying degrees of oxidative injury. To combat these unrelenting physical, chemical, and biological insults, the respiratory epithelium is covered with a thin layer of lining fluid containing several antioxidants and surfactants. Inhaled toxic agents stimulate the generation of reactive oxygen/nitrogen species (ROS/RNS), which in turn provoke inflammatory responses resulting in the release of proinflammatory cytokines and chemokines. These subsequently stimulate the influx of polymorphonuclear leukocytes (PMNs) and monocytes into the lung so as to combat the invading pathogens or toxic agents. In addition to the beneficial effects, persistent inhalation of the invading pathogens or toxic agents may result in overwhelming production of ROS/RNS, producing chronic inflammation and lung injury. During inflammation, enhanced ROS/RNS production may induce recurring DNA damage, inhibition of apoptosis, and activation of proto-oncogenes by initiating signal transduction pathways. Therefore, it is conceivable that chronic inflammation-induced production of ROS/RNS in the lung may predispose individuals to lung cancer. This review describes the complex relationship between lung inflammation and carcinogenesis, and highlights the role of ROS/RNS in cancer development.


Journal of Biological Chemistry | 2006

S-Nitrosylation of Bcl-2 Inhibits Its Ubiquitin-Proteasomal Degradation A NOVEL ANTIAPOPTOTIC MECHANISM THAT SUPPRESSES APOPTOSIS

Neelam Azad; Val Vallyathan; Liying Wang; Vimon Tantishaiyakul; Christian Stehlik; Stephen S. Leonard; Yon Rojanasakul

Bcl-2 is a key apoptosis regulatory protein of the mitochondrial death pathway whose function is dependent on its expression levels. Although Bcl-2 expression is controlled by various mechanisms, post-translational modifications, such as ubiquitination and proteasomal degradation, have emerged as important regulators of Bcl-2 function. However, the underlying mechanisms of this regulation are unclear. We report here that Bcl-2 undergoes S-nitrosylation by endogenous nitric oxide (NO) in response to multiple apoptotic mediators and that this modification inhibits ubiquitin-proteasomal degradation of Bcl-2. Inhibition of NO production by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and by NO synthase inhibitor aminoguanidine effectively inhibited S-nitrosylation of Bcl-2, increased its ubiquitination, and promoted apoptotic cell death induced by chromium (VI). In contrast, the NO donors dipropylenetriamine NONOate and sodium nitroprusside showed opposite effects. The effect of NO on Bcl-2 stability was shown to be independent of its dephosphorylation. Mutational analysis of Bcl-2 further showed that the two cysteine residues of Bcl-2 (Cys158 and Cys229) are important in the S-nitrosylation process and that mutations of these cysteines completely inhibited Bcl-2 S-nitrosylation. Treatment of the cells with other stress inducers, including Fas ligand and buthionine sulfoxide, also induced Bcl-2 S-nitrosylation, suggesting that this is a general phenomenon that regulates Bcl-2 stability and function under various stress conditions. These findings indicate a novel function of NO and its regulation of Bcl-2, which provides a key mechanism for the control of apoptotic cell death and cancer development.


Journal of Pharmacology and Experimental Therapeutics | 2006

Reactive Oxygen Species Mediate Caspase Activation and Apoptosis Induced by Lipoic Acid in Human Lung Epithelial Cancer Cells through Bcl-2 Down-Regulation

Jirapan Moungjaroen; Ubonthip Nimmannit; Patrick S. Callery; Liying Wang; Neelam Azad; Vimolmas Lipipun; Pithi Chanvorachote; Yon Rojanasakul

The antioxidant α-lipoic acid (LA) is a naturally occurring compound that has been shown to possess promising anticancer activity because of its ability to preferentially induce apoptosis and inhibit proliferation of cancer cells relative to normal cells. However, the molecular mechanisms underlying the apoptotic effect of LA are not well understood. We report here that LA induced reactive oxygen species (ROS) generation and a concomitant increase in apoptosis of human lung epithelial cancer H460 cells. Inhibition of ROS generation by ROS scavengers or by overexpression of antioxidant enzymes glutathione peroxidase and superoxide dismutase effectively inhibited LA-induced apoptosis, indicating the role of ROS, especially hydroperoxide and superoxide anion, in the apoptotic process. Apoptosis induced by LA was found to be mediated through the mitochondrial death pathway, which requires caspase-9 activation. Inhibition of caspase activity by the pan-caspase inhibitor (z-VAD-FMK) or caspase-9-specific inhibitor (z-LEHD-FMK) completely inhibited the apoptotic effect of LA. Likewise, the mitochondrial respiratory chain inhibitor rotenone potently inhibited the apoptotic and ROS-inducing effects of LA, supporting the role of mitochondrial ROS in LA-induced cell death. LA induced down-regulation of mitochondrial Bcl-2 protein through peroxide-dependent proteasomal degradation, and overexpression of the Bcl-2 protein prevented the apoptotic effect of LA. Together, our findings indicate a novel pro-oxidant role of LA in apoptosis induction and its regulation by Bcl-2, which may be exploited for the treatment of cancer and related apoptosis disorders.


Journal of Biological Chemistry | 2005

Nitric Oxide Negatively Regulates Fas CD95-induced Apoptosis through Inhibition of Ubiquitin-Proteasome-mediated Degradation of FLICE Inhibitory Protein

Pithi Chanvorachote; Ubonthip Nimmannit; Liying Wang; Christian Stehlik; Bin Lu; Neelam Azad; Yon Rojanasakul

Stimulation of cell surface Fas (CD95) results in recruitment of cytoplasmic proteins and activation of caspase-8, which in turn activates downstream effector caspases leading to programmed cell death. Nitric oxide (NO) plays a key role in the regulation of apoptosis, but its role in Fas-induced cell death and the underlying mechanism are largely unknown. Here we show that stimulation of the Fas receptor by its ligand (FasL) results in rapid generation of NO and concomitant decrease in cellular FLICE inhibitory protein (FLIP) expression without significant effect on Fas and Fas-associated death domain (FADD) adapter protein levels. FLIP down-regulation as well as caspase-8 activation and apoptosis induced by FasL were all inhibited by the NO-liberating agent sodium nitroprusside and dipropylenetriamine NONOate, whereas the NO synthase inhibitor aminoguanidine and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO) had opposite effects, indicating an anti-apoptotic role of NO in the Fas signaling process. FasL-induced down-regulation of FLIP is mediated by a ubiquitin-proteasome pathway that is negatively regulated by NO. S-nitrosylation of FLIP is an important mechanism rendering FLIP resistant to ubiquitination and proteasomal degradation by FasL. Deletion analysis shows that the caspase-like domain of FLIP is a key target for S-nitrosylation by NO, and mutations of its cysteine 254 and cysteine 259 residues completely inhibit S-nitrosylation, leading to increased ubiquitination and proteasomal degradation of FLIP. These findings indicate a novel pathway for NO regulation of FLIP that provides a key mechanism for apoptosis regulation and a potential new target for intervention in death receptor-associated diseases.


Journal of Immunology | 2008

The Fas Death Signaling Pathway Connecting Reactive Oxygen Species Generation and FLICE Inhibitory Protein Down-Regulation

Liying Wang; Neelam Azad; Lalana Kongkaneramit; Fei Chen; Yongju Lu; Bing-Hua Jiang; Yon Rojanasakul

Fas-mediated apoptosis plays an important role in normal tissue homeostasis, and disruption of this death pathway contributes to many human diseases. Induction of apoptosis via Fas activation has been associated with reactive oxygen species (ROS) generation and down-regulation of FLICE inhibitory protein (FLIP); however, the relationship between these two events and their role in Fas-mediated apoptosis are unclear. We show herein that ROS are required for FLIP down-regulation and apoptosis induction by Fas ligand (FasL) in primary lung epithelial cells. ROS mediate the down-regulation of FLIP by ubiquitination and subsequent degradation by proteasome. Inhibition of ROS by antioxidants or by ectopic expression of ROS-scavenging enzymes glutathione peroxidase and superoxide dismutase effectively inhibited FLIP down-regulation and apoptosis induction by FasL. Hydrogen peroxide is a primary oxidative species responsible for FLIP down-regulation, whereas superoxide serves as a source of peroxide and a scavenger of NO, which positively regulates FLIP via S-nitrosylation. NADPH oxidase is a key source of ROS generation induced by FasL, and its inhibition by dominant-negative Rac1 expression or by chemical inhibitor decreased the cell death response to FasL. Taken together, our results indicate a novel pathway of FLIP regulation by an interactive network of reactive oxygen and nitrogen species that provides a key mechanism of apoptosis regulation in Fas-induced cell death and related apoptosis disorders.


Annals of the New York Academy of Sciences | 2010

Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation

Neelam Azad; Anand Krishnan V. Iyer; Val Vallyathan; Liying Wang; Vincent Castranova; Christian Stehlik; Yon Rojanasakul

Bcl‐2 is a key apoptosis regulatory protein of the mitochondrial death pathway. The oncogenic potential of Bcl‐2 is well established, with its overexpression reported in various cancers. The antiapoptotic function of Bcl‐2 is closely associated with its expression levels. Reactive oxygen and nitrogen species (ROS/RNS) are important intracellular signaling molecules that play a key role in various physiological processes including apoptosis. We have recently reported that ROS and RNS can regulate Bcl‐2 expression levels, thereby impacting its function. Superoxide anion (·O2–) plays a proapoptotic role by causing downregulation and degradation of Bcl‐2 protein through the ubiquitin‐proteasomal pathway. In contrast, nitric oxide (NO)‐mediated S‐nitrosylation of Bcl‐2 prevents its ubiquitination and subsequent proteasomal degradation, leading to inhibition of apoptosis. Interestingly, NO‐mediated S‐nitrosylation and stabilization of Bcl‐2 protein was the primary mechanism involved in the malignant transformation of nontumorigenic lung epithelial cells in response to long‐term carcinogen exposure. We describe a novel mechanism of Bcl‐2 regulation by ·O2– and NO, providing a new dimension to reactive species‐mediated Bcl‐2 stability, apoptotic cell death, and cancer development.


American Journal of Respiratory Cell and Molecular Biology | 2010

Phosphatidylinositol-3-Kinase/Akt Regulates Bleomycin-Induced Fibroblast Proliferation and Collagen Production

Yongju Lu; Neelam Azad; Liying Wang; Anand Krishnan V. Iyer; Vincent Castranova; Bing-Hua Jiang; Yon Rojanasakul

Abnormal repair and dysregulated angiogenesis have been implicated in the pathogenesis of pulmonary fibrosis, but the underlying mechanisms of regulation are not well understood. The present study investigated the role of phosphatidylinositol-3-kinase (PI3K)/Akt in fibrogenesis of human lung fibroblasts and its regulation by reactive oxygen species (ROS). Exposure of lung fibroblasts to bleomycin, a known inducer of fibrosis, resulted in rapid activation of PI3K/Akt and a parallel increase in fibroblast proliferation and collagen production, characteristics of lung fibrosis. Bleomycin had no significant effect on total Akt protein expression but induced phosphorylation of the protein at threonine 308 and serine 473 positions. Inhibition of this phosphorylation by PI3K inhibitors or by dominant-negative Akt (T308A/S473A) expression abrogated the effects of bleomycin on fibroblast proliferation and collagen production, suggesting the role of PI3K/Akt in the fibrogenic process. Activation of PI3K/Akt by bleomycin also led to transcriptional activation and protein expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor, which contributed to the fibroproliferative and collagen-inducing effects of bleomycin. The fibrogenic effects of bleomycin were dependent on ROS generation, particularly superoxide anion and hydrogen peroxide, which were induced by bleomycin. Inhibition of ROS generation by antioxidant enzymes, catalase and superoxide dismutase mimetic MnTBAP, abrogated the fibrogenic effects of bleomycin as well as its induction of PI3K/Akt and HIF-1alpha activation. Together, our results indicate a novel role of PI3K/Akt in fibrogenesis of human lung fibroblasts and its regulation by ROS, which could be exploited for the treatment of pulmonary fibrosis and related disorders.


Nitric Oxide | 2008

Role of S-Nitrosylation in Apoptosis Resistance and Carcinogenesis

Anand Krishnan V. Iyer; Neelam Azad; Liying Wang; Yon Rojanasakul

Nitric oxide (NO) has been widely recognized as a positive regulator of tumorigenesis and cancer progression through its ability to regulate important proteins in various signal transduction pathways. S-Nitrosylation, or covalent attachment of NO to protein sulphydryl groups, has gained prominence as an important mechanism by which NO modulates physiologic and pathologic cellular responses. In this article, we discuss S-nitrosylation of two key apoptosis-regulatory proteins of the intrinsic and extrinsic death pathways, namely B-cell lymphoma-2 (Bcl-2) and FLICE-inhibitory protein (FLIP). These proteins have been shown to be upregulated in a variety of tumors and have been implicated with cancer chemoresistance through dysregulation of apoptosis. S-Nitrosylation of these proteins precludes their ubiquitination and subsequent degradation by the proteasome, thus accentuating their anti-apoptotic effect which is critical in the context of tumorigenic potential and cancer progression. We propose that such post-translational modifications of proteins by NO may be a general mechanism that tumor cells exploit to tilt the scales towards survival and proliferation by evading cell death.


Nanotoxicology | 2013

Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses

Neelam Azad; Anand Krishnan V. Iyer; Liying Wang; Yuxin Liu; Yongju Lu; Yon Rojanasakul

Abstract Single-walled carbon nanotubes (SWCNTs) are fibrous nanoparticles that are being used widely for various applications including drug delivery. SWCNTs are currently under special attention for possible cytotoxicity. Recent reports suggest that exposure to nanoparticles leads to pulmonary fibrosis. We report that SWCNT-mediated interplay of fibrogenic and angiogenic regulators leads to increased angiogenesis, which is a novel finding that furthers the understanding of SWCNT-induced cytotoxicity. SWCNTs induce fibrogenesis through reactive oxygen species-regulated phosphorylation of p38 mitogen-activated protein kinase (MAPK). Activation of p38 MAPK by SWCNTs led to the induction of transforming growth factor (TGF)-β1 as well as vascular endothelial growth factor (VEGF). Both TGF-β1 and VEGF contributed significantly to the fibroproliferative and collagen-inducing effects of SWCNTs. Interestingly, a positive feedback loop was observed between TGF-β1 and VEGF. This interplay of fibrogenic and angiogenic mediators led to increased angiogenesis in response to SWCNTs. Overall this study reveals key signalling molecules involved in SWCNT-induced fibrogenesis and angiogenesis.


Carcinogenesis | 2008

Superoxide-mediated proteasomal degradation of Bcl-2 determines cell susceptibility to Cr(VI)-induced apoptosis

Neelam Azad; Anand Krishnan V. Iyer; Aranya Manosroi; Liying Wang; Yon Rojanasakul

Hexavalent chromium [Cr(VI)] compounds are redox cycling environmental carcinogens that induce apoptosis as the primary mode of cell death. Defects in apoptosis regulatory mechanisms contribute to carcinogenesis induced by Cr(VI). Activation of apoptosis signaling pathways is tightly linked with the generation of reactive oxygen species (ROS). Likewise, ROS have been implicated in the regulation of Cr(VI)-induced apoptosis and carcinogenicity; however, its role in Cr(VI)-induced apoptosis and the underlying mechanism are largely unknown. We report that ROS, specifically superoxide anion (.O(-)(2), mediates Cr(VI)-induced apoptosis of human lung epithelial H460 cells. H460 rho(0) cells that lack mitochondrial DNA demonstrated a significant decrease in ROS production and apoptotic response to Cr(VI), indicating the involvement of mitochondrial ROS in Cr(VI)-induced apoptosis. In agreement with this observation, we found that Cr(VI) induces apoptosis mainly through the mitochondrial death pathway via caspase-9 activation, which is negatively regulated by the antiapoptotic protein Bcl-2. Furthermore, .O(-)(2) induced apoptosis in response to Cr(VI) exposure by downregulating and degrading Bcl-2 protein through the ubiquitin-proteasomal pathway. This study reveals a novel mechanism linking .O(-)(2) with Bcl-2 stability and provides a new dimension to ROS-mediated Bcl-2 downregulation and apoptosis induction.

Collaboration


Dive into the Neelam Azad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liying Wang

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge