Christian Sutter
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Sutter.
Journal of the National Cancer Institute | 2008
Bernd Frank; Miriam Wiestler; Silke Kropp; Kari Hemminki; Amanda B. Spurdle; Christian Sutter; Barbara Wappenschmidt; Xiaoqing Chen; Jonathan Beesley; John L. Hopper; Alfons Meindl; Marion Kiechle; Tracy Slanger; Peter Bugert; Rita K. Schmutzler; Claus R. Bartram; Dieter Flesch-Janys; Elke Mutschelknauss; Katie A. Ashton; Ramona Salazar; Emily L. Webb; Ute Hamann; Hiltrud Brauch; Christina Justenhoven; Yon-Dschun Ko; Thomas Brüning; Isabel dos Santos Silva; Nichola Johnson; Paul Pharoah; Alison M. Dunning
Data from several studies have suggested that polymorphisms in A-kinase anchoring proteins (AKAPs), which are key components of signal transduction, contribute to carcinogenesis. To evaluate the impact of AKAP variants on breast cancer risk, we genotyped six nonsynonymous single-nucleotide polymorphisms that were predicted to be deleterious and found two (M463I, 1389G>T and N2792S, 8375A>G) to be associated with an allele dose-dependent increase in risk of familial breast cancer in a German population. We extended the analysis of AKAP9 M463I, which is in strong linkage disequilibrium with AKAP9 N2792S, to 9523 breast cancer patients and 13770 healthy control subjects from seven independent European and Australian breast cancer studies. All statistical tests were two-sided. The collaborative analysis confirmed the association of M463I with increased breast cancer risk. Among all breast cancer patients, the combined adjusted odds ratio (OR) of breast cancer for individuals homozygous for the rare allele TT (frequency = 0.19) compared with GG homozygotes was 1.17 (95% confidence interval [CI] = 1.08 to 1.27, P = .0003), and the OR for TT homozygotes plus GT heterozygotes compared with GG homozygotes was 1.10 (95% CI = 1.04 to 1.17, P = .001). Among the combined subset of 2795 familial breast cancer patients, the respective ORs were 1.27 (95% CI = 1.12 to 1.45, P = .0003) and 1.16 (95% CI = 1.06 to 1.27, P = .001).
Experimental Cell Research | 1991
Christian Sutter; Roswitha Nischt; Hermelita Winter; Jürgen Schweizer
Normally the expression of the murine type I keratin K13 is restricted to differentiating cells of internal squamous epithelia which line the oral cavity and the upper digestive tract. Recently, however, we were able to show that K13 is aberrantly but constitutively expressed without its normal type II partner K4 also in differentiating parts of 7,12-dimethylbenz(a)anthracene (DMBA/TPA) 12-O-tetradecanoylphorbol-13-acetate-induced squamous cell carcinomas of mouse back skin, whereas its likewise suprabasal expression in papillomas is variable (Nischt et al., Mol. Carcinogenesis 1, 96-108, 1988). In an attempt to reproduce the aberrant expression of K13 in a mouse in vitro system, we have investigated eight established murine epidermal cell lines for their putative ability to express K13. The cell lines differed distinctly in their derivation and comprised cell lines originating from DMBA/TPA induced papillomas (line SP1) or DMBA-treated adult mouse epidermis (line 308) as well as cell lines derived from DMBA or DMBA/TPA-treated primary epidermal keratinocytes (lines PDV and MCA 3D) and cell lines which arose spontaneously by long-term culture of normal epidermal keratinocytes (lines HEL 30 degrees HEL 37 degrees, HELP I and HELP III). We show that, independent of their derivation, all cell lines possess the intrinsic property to aberrantly express K13. Invariably the K13 gene is not expressed when the lines are cultured under low Ca2+ conditions (0.05 mM) and thus prevented from differentiation. Its expression can, however, be induced either by increasing the extracellular Ca2+ concentration or by the addition of physiological concentrations of vitamin A acid to low Ca2+ medium. Whereas in the latter case, K13 expression occurs without concomitant induction of morphological differentiation of the cells, Ca2+ elevation in the culture medium induces squamous differentiation and K13 expression occurs only in differentiating cells, thus reflecting the situation observed in in vivo tumors. All cell lines exhibit a concentration optimum for the stimulatory agents; however, the degree of maximal K13 expression varies considerably among the individual cell lines and shows a striking correlation with the reported tumorigenicity of the lines after transplantation to animals. In contrast, a tentatively suggested correlation between the activation of the Ha-ras gene and the aberrant expression of K13 (Nischt et al., Mol. Carcinogenesis 1, 96-108, 1988) could not definitely be confirmed since we observed K13 expression also in three cell lines which did not carry a mutation in codon 61 of the Ha-ras gene.(ABSTRACT TRUNCATED AT 400 WORDS)
British Journal of Cancer | 2009
Olga M. Sinilnikova; Antonis C. Antoniou; Jacques Simard; Sue Healey; Mélanie Léoné; Daniel Sinnett; Amanda B. Spurdle; Jonathan Beesley; X Chen; kConFab; Mark H. Greene; Jennifer T. Loud; Flavio Lejbkowicz; Gad Rennert; Irene L. Andrulis; Ocgn; Susan M. Domchek; Katherine L. Nathanson; S. Manoukian; P. Radice; Irene Konstantopoulou; Ignacio Blanco; A L Laborde; Mercedes Durán; A Osorio; Javier Benitez; Ute Hamann; Frans B L Hogervorst; T. A M van Os; Hans J. J. P. Gille
Background:The TP53 pathway, in which TP53 and its negative regulator MDM2 are the central elements, has an important role in carcinogenesis, particularly in BRCA1- and BRCA2-mediated carcinogenesis. A single nucleotide polymorphism (SNP) in the promoter region of MDM2 (309T>G, rs2279744) and a coding SNP of TP53 (Arg72Pro, rs1042522) have been shown to be of functional significance.Methods:To investigate whether these SNPs modify breast cancer risk for BRCA1 and BRCA2 mutation carriers, we pooled genotype data on the TP53 Arg72Pro SNP in 7011 mutation carriers and on the MDM2 309T>G SNP in 2222 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analysed using a Cox proportional hazards model within a retrospective likelihood framework.Results:No association was found between these SNPs and breast cancer risk for BRCA1 (TP53: per-allele hazard ratio (HR)=1.01, 95% confidence interval (CI): 0.93–1.10, Ptrend=0.77; MDM2: HR=0.96, 95%CI: 0.84–1.09, Ptrend=0.54) or for BRCA2 mutation carriers (TP53: HR=0.99, 95%CI: 0.87–1.12, Ptrend=0.83; MDM2: HR=0.98, 95%CI: 0.80–1.21, Ptrend=0.88). We also evaluated the potential combined effects of both SNPs on breast cancer risk, however, none of their combined genotypes showed any evidence of association.Conclusion:There was no evidence that TP53 Arg72Pro or MDM2 309T>G, either singly or in combination, influence breast cancer risk in BRCA1 or BRCA2 mutation carriers.
Molecular Carcinogenesis | 1991
Christian Sutter; James E. Strickland; David J. Welty; Stuart H. Yuspa; Hermelita Winter; Jürgen Schweizer
Molecular Carcinogenesis | 1993
Christian Sutter; P. T. Strickland; Hasan Mukhtar; Rajesh Agarwal; Hermelita Winter; Jürgen Schweizer