Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jelena-Rima Ghadri is active.

Publication


Featured researches published by Jelena-Rima Ghadri.


European Heart Journal | 2014

A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction

Milosz Jaguszewski; Julia Osipova; Jelena-Rima Ghadri; Lars Christian Napp; Christian Widera; Jennifer Franke; Marcin Fijałkowski; Radosław Nowak; Marta Fijalkowska; Ingo Volkmann; Hugo A. Katus; Kai C. Wollert; Johann Bauersachs; Paul Erne; Thomas F. Lüscher; Thomas Thum; Christian Templin

Aims Takotsubo cardiomyopathy (TTC) remains a potentially life-threatening disease, which is clinically indistinguishable from acute myocardial infarction (MI). Today, no established biomarkers are available for the early diagnosis of TTC and differentiation from MI. MicroRNAs (miRNAs/miRs) emerge as promising sensitive and specific biomarkers for cardiovascular disease. Thus, we sought to identify circulating miRNAs suitable for diagnosis of acute TTC and for distinguishing TTC from acute MI. Methods and results After miRNA profiling, eight miRNAs were selected for verification by real-time quantitative reverse transcription polymerase chain reaction in patients with TTC (n = 36), ST-segment elevation acute myocardial infarction (STEMI, n = 27), and healthy controls (n = 28). We quantitatively confirmed up-regulation of miR-16 and miR-26a in patients with TTC compared with healthy subjects (both, P < 0.001), and up-regulation of miR-16, miR-26a, and let-7f compared with STEMI patients (P < 0.0001, P < 0.05, and P < 0.05, respectively). Consistent with previous publications, cardiac specific miR-1 and miR-133a were up-regulated in STEMI patients compared with healthy controls (both, P < 0.0001). Moreover, miR-133a was substantially increased in patients with STEMI compared with TTC (P < 0.05). A unique signature comprising miR-1, miR-16, miR-26a, and miR-133a differentiated TTC from healthy subjects [area under the curve (AUC) 0.835, 95% CI 0.733–0.937, P < 0.0001] and from STEMI patients (AUC 0.881, 95% CI 0.793–0.968, P < 0.0001). This signature yielded a sensitivity of 74.19% and a specificity of 78.57% for TTC vs. healthy subjects, and a sensitivity of 96.77% and a specificity of 70.37% for TTC vs. STEMI patients. Additionally, we noticed a decrease of the endothelin-1 (ET-1)-regulating miRNA-125a-5p in parallel with a robust increase of ET-1 plasma levels in TTC compared with healthy subjects (P < 0.05). Conclusion The present study for the first time describes a signature of four circulating miRNAs as a robust biomarker to distinguish TTC from STEMI patients. The significant up-regulation of these stress- and depression-related miRNAs suggests a close connection of TTC with neuropsychiatric disorders. Moreover, decreased levels of miRNA125a-5p as well as increased plasma levels of its target ET-1 are in line with the microvascular spasm hypothesis of the TTC pathomechanism.


European Heart Journal | 2010

Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy

Christian Templin; Martin Meyer; Maja Müller; Valentin Djonov; Ruslan Hlushchuk; Ivanka Dimova; Stefanie Flueckiger; Peter W. Kronen; Michèle Sidler; Karina Klein; Flora Nicholls; Jelena-Rima Ghadri; Klaus Weber; Dragica Paunovic; Roberto Corti; Simon P. Hoerstrup; Thomas F. Lüscher; Ulf Landmesser

Aims Coronary late stent thrombosis, a rare but devastating complication, remains an important concern in particular with the increasing use of drug-eluting stents. Notably, pathological studies have indicated that the proportion of uncovered coronary stent struts represents the best morphometric predictor of late stent thrombosis. Intracoronary optical frequency domain imaging (OFDI), a novel second-generation optical coherence tomography (OCT)-derived imaging method, may allow rapid imaging for the detection of coronary stent strut coverage with a markedly higher precision when compared with intravascular ultrasound, due to a microscopic resolution (axial ∼10–20 µm), and at a substantially increased speed of image acquisition when compared with first-generation time-domain OCT. However, a histological validation of coronary OFDI for the evaluation of stent strut coverage in vivo is urgently needed. Hence, the present study was designed to evaluate the capacity of coronary OFDI by electron (SEM) and light microscopy (LM) analysis to detect and evaluate stent strut coverage in a porcine model. Methods and results Twenty stents were implanted into 10 pigs and coronary OFDI was performed after 1, 3, 10, 14, and 28 days. Neointimal thickness as detected by OFDI correlated closely with neointimal thickness as measured by LM (r = 0.90, P < 0.01). The comparison of stent strut coverage as detected by OFDI and SEM analysis revealed an excellent agreement (r = 0.96, P < 0.01). In particular, stents completely covered by OFDI analysis were also completely covered by SEM analysis. All incompletely covered stents by OFDI were also incompletely covered by SEM. Analyses of fibrin-covered stent struts suggested that these may rarely be detected as uncovered stent struts by OFDI. Importantly, optical density measurements revealed a significant difference between fibrin- and neointima-covered coronary stent struts [0.395 (0.35–0.43) vs. 0.53 (0.47–0.57); P < 0.001], suggesting that differences in optical density provide information on the type of stent strut coverage. The sensitivity and specificity for detection of fibrin vs. neointimal coverage was evaluated using receiver-operating characteristic analysis. Conclusion The present study demonstrates that OFDI is a highly promising tool for accurate evaluation of coronary stent strut coverage, as supported by a high agreement between OFDI and light and electron microscopic analysis. Furthermore, our data indicate that optical density measurements can provide additional information with respect to the type of stent strut coverage, i.e. fibrin vs. neointimal coverage. Therefore, coronary OFDI analysis will provide important information on the biocompatibility of coronary stents.


European Heart Journal | 2011

Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6)

Christian Templin; Jelena-Rima Ghadri; Jean-Sébastien Rougier; Alessandra Baumer; Vladimir Kaplan; Maxime Albesa; Heinrich Sticht; Anita Rauch; Colleen Puleo; Dan Hu; Hector Barajas-Martinez; Charles Antzelevitch; Thomas F. Lüscher; Hugues Abriel; Firat Duru

AIMS Short QT syndrome (SQTS) is a genetically determined ion-channel disorder, which may cause malignant tachyarrhythmias and sudden cardiac death. Thus far, mutations in five different genes encoding potassium and calcium channel subunits have been reported. We present, for the first time, a novel loss-of-function mutation coding for an L-type calcium channel subunit. METHODS AND RESULTS The electrocardiogram of the affected member of a single family revealed a QT interval of 317 ms (QTc 329 ms) with tall, narrow, and symmetrical T-waves. Invasive electrophysiological testing showed short ventricular refractory periods and increased vulnerability to induce ventricular fibrillation. DNA screening of the patient identified no mutation in previously known SQTS genes; however, a new variant at a heterozygous state was identified in the CACNA2D1 gene (nucleotide c.2264G > C; amino acid p.Ser755Thr), coding for the Ca(v)α(2)δ-1 subunit of the L-type calcium channel. The pathogenic role of the p.Ser755Thr variant of the CACNA2D1 gene was analysed by using co-expression of the two other L-type calcium channel subunits, Ca(v)1.2α1 and Ca(v)β(2b), in HEK-293 cells. Barium currents (I(Ba)) were recorded in these cells under voltage-clamp conditions using the whole-cell configuration. Co-expression of the p.Ser755Thr Ca(v)α(2)δ-1 subunit strongly reduced the I(Ba) by more than 70% when compared with the co-expression of the wild-type (WT) variant. Protein expression of the three subunits was verified by performing western blots of total lysates and cell membrane fractions of HEK-293 cells. The p.Ser755Thr variant of the Ca(v)α(2)δ-1 subunit was expressed at a similar level compared with the WT subunit in both fractions. Since the mutant Ca(v)α(2)δ-1 subunit did not modify the expression of the pore-forming subunit of the L-type calcium channel, Ca(v)1.2α1, it suggests that single channel biophysical properties of the L-type channel are altered by this variant. CONCLUSION In the present study, we report the first pathogenic mutation in the CACNA2D1 gene in humans, which causes a new variant of SQTS. It remains to be determined whether mutations in this gene lead to other manifestations of the J-wave syndrome.


Circulation | 2012

Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression

Christian Templin; Robert Zweigerdt; Kristin Schwanke; Ruth Olmer; Jelena-Rima Ghadri; Maximilian Y. Emmert; Ennio Müller; Silke M. Küest; Susan Cohrs; Roger Schibli; Peter W. Kronen; Monika Hilbe; Andreas Reinisch; Dirk Strunk; Axel Haverich; Simon P. Hoerstrup; Thomas F. Lüscher; Philipp A. Kaufmann; Ulf Landmesser; Ulrich Martin

Background— Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. Methods and Results— Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NISpos-hiPSCs) were established. Iodide uptake, efflux, and viability of NISpos-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NISpos-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of 123I to follow donor cell survival and distribution and with the use of 99mTC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NISpos-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NISpos-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. Conclusions— This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NISpos-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models.Background— Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. Methods and Results— Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NISpos-hiPSCs) were established. Iodide uptake, efflux, and viability of NISpos-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NISpos-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of 123I to follow donor cell survival and distribution and with the use of 99mTC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NISpos-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NISpos-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. Conclusions— This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NISpos-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models. # Clinical Perspective {#article-title-36}


European Heart Journal | 2011

Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography

Aju P. Pazhenkottil; Rene Nkoulou; Jelena-Rima Ghadri; Bernhard A. Herzog; Ronny R. Buechel; Silke M. Küest; Mathias Wolfrum; Michael Fiechter; Lars Husmann; Oliver Gaemperli; Philipp A. Kaufmann

Aims Although cardiac hybrid imaging, fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA), provides important complementary diagnostic information for coronary artery disease (CAD) assessment, no prognostic data exist on the predictive value of cardiac hybrid imaging. Hence, the aim of this study was to assess the prognostic value of hybrid SPECT/CCTA images. Methods and results Of 335 consecutive patients undergoing a 1-day stress/rest (99m)Tc-tetrofosmin SPECT and a CCTA, acquired on stand-alone scanners and fused to obtain cardiac hybrid images, follow-up was obtained in 324 patients (97%). Survival free of all-cause death or non-fatal myocardial infarction (MI) and free of major adverse cardiac events (MACE: death, MI, unstable angina requiring hospitalization, coronary revascularizations) was determined using the Kaplan-Meier method for the following groups: (i) stenosis by CCTA and matching reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; and (iii) normal finding by CCTA and SPECT. Coxs proportional hazard regression was used to identify independent predictors for cardiac events. At a median follow-up of 2.8 years (25th-75th percentile: 1.9-3.6), 69 MACE occurred in 47 patients, including 20 death/MI. A corresponding matched hybrid image finding was associated with a significantly higher death/MI incidence (P < 0.005) and proved to be an independent predictor for MACE. The annual death/MI rate was 6.0, 2.8, and 1.3% for patients with matched, unmatched, and normal findings. Conclusion Cardiac hybrid imaging allows risk stratification in patients with known or suspected CAD. A matched defect on hybrid image is a strong predictor of MACE.


The Journal of Nuclear Medicine | 2011

Improved Outcome Prediction by SPECT Myocardial Perfusion Imaging After CT Attenuation Correction

Aju P. Pazhenkottil; Jelena-Rima Ghadri; Rene Nkoulou; Mathias Wolfrum; Ronny R. Buechel; Silke M. Küest; Lars Husmann; Bernhard A. Herzog; Oliver Gaemperli; Philipp A. Kaufmann

The aim of this study was to determine the impact of attenuation correction with CT (CT-AC) on the prognostic value of SPECT myocardial perfusion imaging (SPECT MPI). Methods: The summed stress score (SSS; 20-segment model) was obtained from filtered backprojection (FBP) and iterative reconstruction with CT-AC in 876 consecutive patients undergoing a 1-d stress–rest 99mTc-tetrofosmin SPECT MPI study for the evaluation of known or suspected coronary artery disease. Survival free of major adverse cardiac events (MACEs; cardiac death or nonfatal myocardial infarction) and survival free of any adverse cardiac events (including cardiac hospitalization, unstable angina, and late coronary revascularization) were analyzed by Kaplan–Meier analysis. Results: At a mean follow-up of 2.3 ± 0.6 y, a total of 184 adverse events occurred in 145 patients, including 35 MACEs (16 cardiac deaths [rate, 1.8%] and 19 nonfatal myocardial infarctions [rate, 2.2%]). With FBP, an SSS of 0–3 best distinguished patients with a low MACE rate (0.6%), followed by an SSS of 4–8 (4.3%), with increased MACE rate, and an SSS of 9–13 (3.8%), which was comparable. By contrast, with CT-AC the discrimination of low from intermediate MACE rate was best observed between an SSS of 0 (0%) and an SSS of 1–3 (3.7%), with a plateau at an SSS of 4–8 (3.2%). Conclusion: CT-AC for SPECT MPI allows improved risk stratification. The prognostically relevant SSS cutoff is shifted toward lower values.


European Heart Journal | 2011

Impact of cardiac hybrid single-photon emission computed tomography/computed tomography imaging on choice of treatment strategy in coronary artery disease

Aju P. Pazhenkottil; Rene Nkoulou; Jelena-Rima Ghadri; Bernhard A. Herzog; Silke M. Küest; Lars Husmann; Mathias Wolfrum; Robert Goetti; Ronny R. Buechel; Oliver Gaemperli; Thomas F. Lüscher; Philipp A. Kaufmann

Aims Cardiac hybrid imaging by fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA) provides important complementary diagnostic information for coronary artery disease (CAD) assessment. We aimed at assessing the impact of cardiac hybrid imaging on the choice of treatment strategy selection for CAD. Methods and results Three hundred and eighteen consecutive patients underwent a 1 day stress/rest 99mTc-tetrofosmin SPECT and a CCTA on a separate scanner for evaluation of CAD. Patients were divided into one of the following three groups according to findings in the hybrid images obtained by fusing SPECT and CCTA: (i) matched finding of stenosis by CCTA and corresponding reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; (iii) normal finding by both CCTA and SPECT. Follow-up was confined to the first 60 days after hybrid imaging as this allows best to assess treatment strategy decisions including the revascularization procedure triggered by its findings. Hybrid images revealed matched, unmatched, and normal findings in 51, 74, and 193 patients. The revascularization rate within 60 days was 41, 11, and 0% for matched, unmatched, and normal findings, respectively (P< 0.001 for all inter-group comparisons). Conclusion Cardiac hybrid imaging with SPECT and CCTA provides an added clinical value for decision making with regard to treatment strategy for CAD.


Journal of the American Heart Association | 2016

ECG Criteria to Differentiate Between Takotsubo (Stress) Cardiomyopathy and Myocardial Infarction

Antonio H. Frangieh; Slayman Obeid; Jelena-Rima Ghadri; Yoichi Imori; Fabrizio D'Ascenzo; Marc Kovac; Frank Ruschitzka; Thomas F. Lüscher; Firat Duru; Christian Templin; Johanna Diekmann; Victoria L. Cammann; Milosz Jaguszewski; Wolfgang Dichtl; Wolfgang M. Franz; Marcin Fijałkowski; Grzegorz Opolski; Jennifer Franke; Hugo A. Katus; Guido Michels; Roman Pfister; Florim Cuculi

Background ECG criteria differentiating Takotsubo cardiomyopathy (TTC) from mainly anterior myocardial infarction (MI) have been suggested; however, this was in small patient populations. Methods and Results Twelve‐lead admission ECGs of consecutive 200 TTC and 200 MI patients were compared in dichotomized groups based on the presence or absence of ST‐elevation MI (STEMI versus STE‐TTC and non‐ST elevation MI versus non ST‐elevation‐TTC). When comparing STEMI and STE‐TTC, ST‐elevation in –aVR was characteristic of STE‐TTC with a sensitivity/specificity of 43% and 95%, positive predictive value (PPV) 91%, and a negative predictive value (NPV) 62% (P<0.001); when ST‐elevation in –aVR is accompanied by ST‐elevation in inferior leads, sensitivity/specificity were 14% and 98% (PPV was 89% and NPV 52%) (P=0.001), and 12% and 100% when associated with ST‐elevation in anteroseptal leads (PPV 100%, NPV 52%) (P<0.001). On the other hand, STEMI was characterized by ST‐elevation in aVR (sensitivity/specificity of 31% and 95% P<0.001, PPV 85% and NPV 59%) and ST‐depression in V2‐V3‐V4 (sensitivity/specificity of 24% and 100% P<0.001, PPV 100% and NPV 76%). When comparing non‐ST elevation MI and non ST‐elevation‐TTC, T‐inversion in leads I‐aVL‐V5‐V6 had a sensitivity/specificity of 17% and 97% for non ST‐elevation‐TTC (PPV 83% and NPV 55%) (P<0.001), and ST‐elevation in –aVR with T‐inversion in any lead was also specific for non ST‐elevation‐TTC (sensitivity/specificity of 8% and 100%, PPV 100% and NPV 53%) (P=0.006). In non‐ST elevation MI patients, the presence of ST‐depression in V2‐V3 was specific (sensitivity/specificity of 11% and 99%, PPV 91% and NPV 51%) (P=0.01). Conclusions ECG on admission can differentiate between TTC and acute MI, with high specificity and positive predictive value. Clinical Trial Registration URL: https://www.clinicaltrials.gov/. Unique identifier: NCT01947621.


European Heart Journal | 2012

Ventricular rupture in Takotsubo cardiomyopathy

Milosz Jaguszewski; Marcin Fijałkowski; Radosław Nowak; Piotr Czapiewski; Jelena-Rima Ghadri; Christian Templin; Andrzej Rynkiewicz

An 82-year-old female after a stress event, with no past medical history of cardiovascular diseases, was referred for emergency coronary angiography. She was suffering from chest pain, with a blood pressure of 124/67 mmHg and a heart rate of 76 b.p.m. Prominent ST-segment elevation in V1–V5 and increased troponin I level (14.82 ng/mL) suggested anteroseptal acute myocardial infarction. Urgent angiography documented …


Experimental Dermatology | 2009

Ex vivo expanded haematopoietic progenitor cells improve dermal wound healing by paracrine mechanisms

Christian Templin; Karsten Grote; Kai Schledzewski; Jelena-Rima Ghadri; Sabine Schnabel; Lars Christian Napp; Bernhard Schieffer; Hjalmar Kurzen; Sergij Goerdt; Ulf Landmesser; Wolfgang Koenen; Jörg Faulhaber

Background:  Although dermal wounds are common, treatment remains limited and largely ineffective. Recent studies suggest that therapeutic application of progenitor cells is useful for tissue regeneration.

Collaboration


Dive into the Jelena-Rima Ghadri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge