Christian Touriol
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Touriol.
Biology of the Cell | 2003
Christian Touriol; Stéphanie Bornes; Sophie Bonnal; Sylvie Audigier; Hervé Prats; Anne-Catherine Prats; Stéphan Vagner
The use of several translation initiation codons in a single mRNA, by expressing several proteins from a single gene, contributes to the generation of protein diversity. A small, yet growing, number of mammalian mRNAs initiate translation from a non‐AUG codon, in addition to initiating at a downstream in‐frame AUG codon. Translation initiation on such mRNAs results in the synthesis of proteins harbouring different amino terminal domains potentially conferring on these isoforms distinct functions. Use of non‐AUG codons appears to be governed by several features, including the sequence context and the secondary structure surrounding the codon. Selection of the downstream initiation codon can occur by leaky scanning of the 43S ribosomal subunit, internal entry of ribosome or ribosomal shunting. The biological significance of non‐AUG alternative initiation is demonstrated by the different subcellular localisations and/or distinct biological functions of the isoforms translated from the single mRNA as illustrated by the two main angiogenic factor genes encoding the fibroblast growth factor 2 (FGF2) and the vascular endothelial growth factor (VEGF). Consequently, the regulation of alternative initiation of translation might have a crucial role for the biological function of the gene product.
Molecular and Cellular Biology | 1999
Emmanuelle Arnaud; Christian Touriol; Christel Boutonnet; Marie-Claire Gensac; Stéphan Vagner; Hervé Prats; Anne-Catherine Prats
ABSTRACT Four isoforms of human fibroblast growth factor 2 (FGF-2) result from alternative initiations of translation at three CUG start codons and one AUG start codon. Here we characterize a new 34-kDa FGF-2 isoform whose expression is initiated at a fifth initiation codon. This 34-kDa FGF-2 was identified in HeLa cells by using an N-terminal directed antibody. Its initiation codon was identified by site-directed mutagenesis as being a CUG codon located at 86 nucleotides (nt) from the FGF-2 mRNA 5′ end. Both in vitro translation and COS-7 cell transfection using bicistronic RNAs demonstrated that the 34-kDa FGF-2 was exclusively expressed in a cap-dependent manner. This contrasted with the expression of the other FGF-2 isoforms of 18, 22, 22.5, and 24 kDa, which is controlled by an internal ribosome entry site (IRES). Strikingly, expression of the other FGF-2 isoforms became partly cap dependent in vitro in the presence of the 5,823-nt-long 3′ untranslated region of FGF-2 mRNA. Thus, the FGF-2 mRNA can be translated both by cap-dependent and IRES-driven mechanisms, the balance between these two mechanisms modulating the ratio of the different FGF-2 isoforms. The function of the new FGF-2 was also investigated. We found that the 34-kDa FGF-2, in contrast to the other isoforms, permitted NIH 3T3 cell survival in low-serum conditions. A new arginine-rich nuclear localization sequence (NLS) in the N-terminal region of the 34-kDa FGF-2 was characterized and found to be similar to the NLS of human immunodeficiency virus type 1 Rev protein. These data suggest that the function of the 34-kDa FGF-2 is mediated by nuclear targets.
Laboratory Investigation | 2001
Frederic Tort; Magda Pinyol; Karen Pulford; Giovanna Roncador; Lluis Hernández; Iracema Nayach; Hanneke C. Kluin-Nelemans; Philip M. Kluin; Christian Touriol; Georges Delsol; David Y. Mason; Elias Campo
The majority of anaplastic large cell lymphomas (ALCL) are associated with chromosomal abnormalities affecting the anaplastic lymphoma kinase (ALK) gene which result in the expression of hybrid ALK fusion proteins in the tumor cells. In most of these tumors, the hybrid gene comprises the 5′ region of nucleophosmin (NPM) fused in frame to the 3′ portion of ALK, resulting in the expression of the chimeric oncogenic tyrosine kinase NPM-ALK. However, other variant rearrangements have been described in which ALK fuses to a partner other than NPM. Here we have identified the moesin (MSN) gene at Xq11–12 as a new partner of ALK in a case of ALCL which exhibited a distinctive membrane-restricted pattern of ALK labeling. The hybrid MSN-ALK protein had a molecular weight of 125 kd and contained an active tyrosine kinase domain. The unique membrane staining pattern of ALK is presumed to reflect association of moesin with cell membrane proteins. In contrast to other translocations involving the ALK gene, the ALK breakpoint in this case occurred within the exonic sequence coding for the juxtamembrane portion of ALK. Identification of the genomic breakpoint confirmed the in-frame fusion of the whole MSN intron 10 to a 17 bp shorter juxtamembrane exon of ALK. The breakpoint in der(2) chromosome showed a deletion, including 30 bp of ALK and 36 bp of MSN genes. These findings indicate that MSN may act as an alternative fusion partner for activation of ALK in ALCL and provide further evidence that oncogenic activation of ALK may occur at different intracellular locations.
Oncogene | 2004
Florence Armstrong; Marie-Michèle Duplantier; Pascal Trempat; Corinne Hieblot; Laurence Lamant; Estelle Espinos; Michèle Allouche; Elias Campo; Georges Delsol; Christian Touriol
Majority of anaplastic large-cell lymphomas (ALCLs) are associated with the t(2;5)(p23;q35) translocation, fusing the NPM (nucleophosmin) and ALK (anaplastic lymphoma kinase) genes (NPM-ALK). Recent studies demonstrated that ALK may also be involved in variant translocations, namely, t(1;2)(q25;p23), t(2;3)(p23;q21), t(2;17)(p23;q23) and inv(2)(p23q35), which create the TPM3-ALK, TFG-ALK5, CLTC-ALK, and ATIC-ALK fusion genes, respectively. Although overexpression of NPM-ALK has previously been shown to transform fibroblasts, the transforming potential of variant X-ALK proteins has not been precisely investigated. We stably transfected the cDNAs coding for NPM-ALK, TPM3-ALK, TFG-ALK, CLTC-ALK or ATIC-ALK into nonmalignant NIH3T3 cells. All X-ALK variants are tyrosine phosphorylated and their subcellular distribution was in agreement with that observed in tumors. Moreover, our results show that the in vitro transforming capacity of NIH3T3-transfected cells are in relation to the level of X-ALK fusion proteins excepted for TPM3-ALK for which there is an inverse correlation. The differences between the five X-ALK variants with regard to proliferation rate, colony formation in soft agar, invasion, migration through the endothelial barrier and tumorigenicity seem to be due to differential activation of various signaling pathways such as PI3-kinase/AKT. These findings may have clinical implications in the pathogenesis and prognosis of ALK-positive ALCLs.
Journal of Biological Chemistry | 1999
Christian Touriol; Antonin Morillon; Marie-Claire Gensac; Hervé Prats; Anne-Catherine Prats
Fibroblast growth factor 2 (FGF-2) belongs to a family of 18 genes coding for either mitogenic differentiating factors or oncogenic proteins, the expression of which must be tightly controlled. We looked for regulatory elements in the 5823-nucleotide-long 3′-untranslated region of the FGF-2 mRNA that contains eight potential alternative polyadenylation sites. Quantitative reverse transcription-polymerase chain reaction revealed that poly(A) site utilization was cell type-dependent, with the eighth poly(A) site being used (95%) in primary human skin fibroblasts, whereas proximal sites were used in the transformed cell lines studied here. We used a cell transfection approach with synthetic reporter mRNAs to localize a destabilizing element between the first and second poly(A) sites. Although AU-rich, the FGF-2-destabilizing element had unique features: it involved a 122-nucleotide direct repeat, with both elements of the repeat being required for the destabilizing activity. These data show that short stable FGF-2 mRNAs are present in transformed cells, whereas skin fibroblasts contain mostly long unstable mRNAs, suggesting that FGF-2 mRNA stability cannot be regulated in transformed cells. The results also provide evidence of a multilevel post-transcriptional control of FGF-2 expression; such a stringent control prevents FGF-2 overexpression and permits its expression to be enhanced only in relevant physiological situations.
Circulation Research | 2007
Stéphanie Bornes; Leonel Prado-Lourenco; Amandine Bastide; Catherine Zanibellato; Jason S. Iacovoni; Eric Lacazette; Anne-Catherine Prats; Christian Touriol; Hervé Prats
Vascular endothelial growth factor-A (VEGF), a powerful factor involved in vasculogenesis and angiogenesis, is translationally regulated through 2 independent internal ribosome entry sites (IRESs A and B). IRESs enable an mRNA to be translated under conditions in which 5′-cap–dependent translation is inhibited, such as low oxygen stress. In the VEGF mRNA, IRES A influences translation at the canonical AUG codon, whereas the 5′ IRES B element regulates initiation at an upstream, in frame CUG. In this study, we have developed transgenic mice expressing reporter genes under the control of these 2 IRESs. We reveal that although these IRESs display low activity in embryos and adult tissues, they permit efficient translation at early time points in ischemic muscle, a stress under which cap-dependent translation is inhibited. These results demonstrate the in vivo efficacy of the VEGF IRESs in response to a local environmental stress such as hypoxia.
Nucleic Acids Research | 2008
Amandine Bastide; Zeïneb S. Karaa; Sté Phanie Bornes; Corinne Hieblot; Eric Lacazette; Hervé Prats; Christian Touriol
Vascular endothelial growth factor A (VEGF-A) is a potent secreted mitogen critical for physiological and pathological angiogenesis. Regulation of VEGF-A occurs at multiple levels, including transcription, mRNA stabilization, splicing, translation and differential cellular localization of various isoforms. Recent advances in our understanding of the posttranscriptional regulation of VEGF-A are comprised of the identification of stabilizing mRNA-binding proteins and the discovery of two internal ribosomal entry sites (IRES) as well as two alternative initiation codons in the 5′UTR of the VEGF-A mRNA. We have previously reported that VEGF-A translation initiation at both the AUG and CUG codons is dependent on the exon content of the coding region. In this report, we show that the expression of different VEGF-A isoforms is regulated by a small upstream open reading frame (uORF) located within an internal ribosome entry site, which is translated through a cap-independent mechanism. This uORF acts as a cis-regulatory element that regulates negatively the expression of the VEGF 121 isoform. Our data provide a framework for understanding how VEGF-A mRNAs are translated, and how the production of the VEGF 121 isoform is secured under non-hypoxic environmental conditions.
Acta neuropathologica communications | 2014
Johnatan Ceccom; Najat Loukh; Valérie Lauwers-Cances; Christian Touriol; Yvan Nicaise; Catherine Gentil; Emmanuelle Uro-Coste; Stuart M. Pitson; Claude Alain Maurage; Charles Duyckaerts; Olivier Cuvillier; Marie-Bernadette Delisle
BackgroundThe accumulation of beta amyloid (Aβ) peptides, a hallmark of Alzheimer’s disease (AD) is related to mechanisms leading to neurodegeneration. Among its pleiotropic cellular effects, Aβ accumulation has been associated with a deregulation of sphingolipid metabolism. Sphingosine 1-phosphate (S1P) derived from sphingosine is emerging as a critical lipid mediator regulating various biological activities including cell proliferation, survival, migration, inflammation, or angiogenesis. S1P tissue level is low and kept under control through equilibrium between its synthesis mostly governed by sphingosine kinase-1 (SphK1) and its degradation by sphingosine 1-phosphate lyase (SPL). We have previously reported that Aβ peptides were able to decrease the activity of SphK1 in cell culture models, an effect that could be blocked by the prosurvival IGF-1/IGF-1R signaling.ResultsHerein, we report for the first time the expression of both SphK1 and SPL by immunohistochemistry in frontal and entorhinal cortices from 56 human AD brains. Immunohistochemical analysis revealed a decreased expression of SphK1 and an increased expression of SPL both correlated to amyloid deposits in the entorhinal cortex. Otherwise, analysis of brain tissue extracts showed a decrease of SphK1 expression in AD brains whereas SPL expression was increased. The content of IGF-1R, an activator of SphK1, was found decreased in AD brains as well as S1P1, the major receptor for S1P.ConclusionsCollectively, these results highlight the importance of S1P in AD suggesting the existence of a global deregulation of S1P signaling in this disease from its synthesis by SphK1 and degradation by SPL to its signaling by the S1P1 receptor.
Hepatology | 2009
Valérie Haurie; Ludovic Ménard; Alexandra Nicou; Christian Touriol; Philippe Metzler; Jérémy Fernandez; Danièle Taras; Patrick Lestienne; Charles Balabaud; Paulette Bioulac-Sage; Hervé Prats; Jessica Zucman-Rossi; Jean Rosenbaum
Reptin and Pontin are related ATPases associated with stoichiometric amounts in several complexes involved in chromatin remodeling, transcriptional regulation, and telomerase activity. We found that Reptin was up‐regulated in hepatocellular carcinoma (HCC) and that down‐regulation of Reptin led to growth arrest. We show here that Pontin messenger RNA (mRNA) is also up‐regulated in human HCC 3.9‐fold as compared to nontumor liver (P = 0.0004). Pontin expression was a strong independent factor of poor prognosis in a multivariate analysis. As for Reptin, depletion of Pontin in HuH7 cells with small interfering RNAs (siRNAs) led to growth arrest. Remarkably, Pontin depletion led to down‐regulation of Reptin as shown with western blot, and vice versa. Whereas siRNAs induced a decrease of their cognate mRNA targets, they did not affect the transcripts of the partner protein. Translation of Pontin or Reptin was not altered when the partner protein was silenced. However, pulse‐chase experiments demonstrated that newly synthesized Pontin or Reptin stability was reduced in Reptin‐ or Pontin‐depleted cells, respectively. This phenomenon was reversed upon inhibition of proteasome or ubiquitin‐activating enzyme (E1). In addition, proteasome inhibition could partly restore Pontin steady‐state levels in Reptin‐depleted cells, as shown by western blot. This restoration was not observed when cells were also treated with cycloheximide, thus confirming that proteasomal degradation in this setting was restricted to newly synthesized Pontin. Conclusion: Reptin and Pontin protein levels are strictly controlled by a posttranslational mechanism involving proteasomal degradation of newly synthesized proteins. These data demonstrate a tight regulatory and reciprocal interaction between Reptin and Pontin, which may in turn lead to the maintenance of their 1:1 stoichiometry. (HEPATOLOGY 2009.)
Oncogene | 2001
Catherine Greenland; Christian Touriol; Gre gory Chevillard; Stephan W. Morris; Renyuan Bai; Justus Duyster; Georges Delsol; MicheÁ le Allouche
Anaplastic large cell lymphomas (ALCLs) are frequently associated with the t(2;5)(p23;q35) translocation, leading to the expression of NPM-ALK, a fusion protein linking nucleophosmin and anaplastic lymphoma kinase, a receptor tyrosine kinase. In ALCLs, dimerization of NPM-ALK leads to constitutive autophosphorylation and activation of the kinase, necessary for NPM-ALK oncogenicity. To investigate whether NPM-ALK, like other oncogenic tyrosine kinases, can inhibit drug-induced apoptosis, we permanently transfected NPM-ALK into Jurkat T-cells. As in ALCLs, NPM-ALK was expressed as a constitutively kinase-active 80 kDa protein, and could be detected by immunocytochemistry in nucleoli, nuclei and cytoplasm. Doxorubicin-induced apoptosis (assessed by cell morphology and annexin V-FITC binding) was significantly inhibited in two independent NPM-ALK-expressing clones (5.2±1.8 and 7.5±0.8% apoptosis), compared to control vector-transduced cells (36±6.7%). Similar results were observed with etoposide. In contrast, Fas-induced apoptosis was not inhibited. Cytochrome c release into the cytosol was delayed in doxorubicin-, but not anti-Fas-treated transfectant cells, indicating that apoptosis inhibition occurred upstream of mitochondrial events. Using NPM-ALK mutants, we demonstrated that inhibition of drug-induced apoptosis: (1) requires functional kinase activity, (2) does not involve phospholipase C-γ, essential for NPM-ALK-mediated mitogenicity and (3) appears to be phosphoinositide 3-kinase independent, despite a strong Akt/PKB activation observed in wild type NPM-ALK-expressing cells. These results suggest that the NPM-ALK antiapoptotic and mitogenic pathways are distinct.