Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christiane Neuber is active.

Publication


Featured researches published by Christiane Neuber.


Journal of Molecular and Cellular Cardiology | 2014

Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation

Marc N. Hirt; Jasper Boeddinghaus; Alice Mitchell; Sebastian Schaaf; Christian Börnchen; Christian Müller; Herbert Schulz; Norbert Hubner; Justus Stenzig; Andrea Stoehr; Christiane Neuber; Alexandra Eder; Pradeep K. Luther; Arne Hansen; Thomas Eschenhagen

Spontaneously beating engineered heart tissue (EHT) represents an advanced in vitro model for drug testing and disease modeling, but cardiomyocytes in EHTs are less mature and generate lower forces than in the adult heart. We devised a novel pacing system integrated in a setup for videooptical recording of EHT contractile function over time and investigated whether sustained electrical field stimulation improved EHT properties. EHTs were generated from neonatal rat heart cells (rEHT, n=96) or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hEHT, n=19). Pacing with biphasic pulses was initiated on day 4 of culture. REHT continuously paced for 16-18 days at 0.5Hz developed 2.2× higher forces than nonstimulated rEHT. This was reflected by higher cardiomyocyte density in the center of EHTs, increased connexin-43 abundance as investigated by two-photon microscopy and remarkably improved sarcomere ultrastructure including regular M-bands. Further signs of tissue maturation include a rightward shift (to more physiological values) of the Ca(2+)-response curve, increased force response to isoprenaline and decreased spontaneous beating activity. Human EHTs stimulated at 2Hz in the first week and 1.5Hz thereafter developed 1.5× higher forces than nonstimulated hEHT on day 14, an ameliorated muscular network of longitudinally oriented cardiomyocytes and a higher cytoplasm-to-nucleus ratio. Taken together, continuous pacing improved structural and functional properties of rEHTs and hEHTs to an unprecedented level. Electrical stimulation appears to be an important step toward the generation of fully mature EHT.


Stem cell reports | 2016

Human Engineered Heart Tissue: Analysis of Contractile Force

Ingra Mannhardt; Kaja Breckwoldt; David Letuffe-Brenière; Sebastian Schaaf; Herbert Schulz; Christiane Neuber; Anika Benzin; Tessa Werner; Alexandra Eder; Thomas Schulze; Birgit Klampe; Torsten Christ; Marc N. Hirt; Norbert Huebner; Alessandra Moretti; Thomas Eschenhagen; Arne Hansen

Summary Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT) from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histologically and functionally. HiPSC-CM in EHTs showed well-developed sarcomeric organization and alignment, and frequent mitochondria. Systematic contractility analysis (26 concentration-response curves) reveals that EHTs replicated canonical response to physiological and pharmacological regulators of inotropy, membrane- and calcium-clock mediators of pacemaking, modulators of ion-channel currents, and proarrhythmic compounds with unprecedented precision. The analysis demonstrates a high degree of similarity between hiPSC-CM in EHT format and native human heart tissue, indicating that human EHTs are useful for preclinical drug testing and disease modeling.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Automated analysis of contractile force and Ca2+ transients in engineered heart tissue

Andrea Stoehr; Christiane Neuber; Christina Baldauf; Ingra Vollert; Felix W. Friedrich; Frederik Flenner; Lucie Carrier; Alexandra Eder; Sebastian Schaaf; Marc N. Hirt; Bülent Aksehirlioglu; Carl W. Tong; Alessandra Moretti; Thomas Eschenhagen; Arne Hansen

Contraction and relaxation are fundamental aspects of cardiomyocyte functional biology. They reflect the response of the contractile machinery to the systolic increase and diastolic decrease of the cytoplasmic Ca(2+) concentration. The analysis of contractile function and Ca(2+) transients is therefore important to discriminate between myofilament responsiveness and changes in Ca(2+) homeostasis. This article describes an automated technology to perform sequential analysis of contractile force and Ca(2+) transients in up to 11 strip-format, fibrin-based rat, mouse, and human fura-2-loaded engineered heart tissues (EHTs) under perfusion and electrical stimulation. Measurements in EHTs under increasing concentrations of extracellular Ca(2+) and responses to isoprenaline and carbachol demonstrate that EHTs recapitulate basic principles of heart tissue functional biology. Ca(2+) concentration-response curves in rat, mouse, and human EHTs indicated different maximal twitch forces (0.22, 0.05, and 0.08 mN in rat, mouse, and human, respectively; P < 0.001) and different sensitivity to external Ca(2+) (EC50: 0.15, 0.39, and 1.05 mM Ca(2+) in rat, mouse, and human, respectively; P < 0.001) in the three groups. In contrast, no difference in myofilament Ca(2+) sensitivity was detected between skinned rat and human EHTs, suggesting that the difference in sensitivity to external Ca(2+) concentration is due to changes in Ca(2+) handling proteins. Finally, this study confirms that fura-2 has Ca(2+) buffering effects and is thereby changing the force response to extracellular Ca(2+).


Human Molecular Genetics | 2013

Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity

Marie-Elodie Cattin; Anne T. Bertrand; Saskia Schlossarek; Marie-Catherine Le Bihan; Søren Skov Jensen; Christiane Neuber; Claudia Crocini; Sophia Maron; Jeanne Lainé; Nathalie Mougenot; S. Varnous; Yves Fromes; Arne Hansen; Thomas Eschenhagen; Valérie Decostre; Lucie Carrier; Gisèle Bonne

Dilated cardiomyopathy (DCM) associates left ventricular (LV) dilatation and systolic dysfunction and is a major cause of heart failure and cardiac transplantation. LMNA gene encodes lamins A/C, proteins of the nuclear envelope. LMNA mutations cause DCM with conduction and/or rhythm defects. The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous Lmna(ΔK32/+) (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac-specific phenotype. Two phases, with two different pathomechanisms, could be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic ΔK32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac remodelling. In older hearts, when DCM has developed, the lamin A/C level was normalized and associated with increased toxic ΔK32-lamin expression. Crossing our mice with the Ub(G76V)-GFP ubiquitin-proteasome system (UPS) reporter mice revealed a heart-specific UPS impairment in Het. While UPS impairment itself has a clear deleterious effect on engineered heart tissues force of contraction, it also leads to the nuclear aggregation of viral-mediated expression of ΔK32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our data provide evidence that Het cardiomyocytes have to deal with major dilemma: mutant lamin A/C degradation or normalization of lamin level to fight the deleterious effect of lamin haploinsufficiency, both leading to DCM.


PLOS ONE | 2010

Common microRNA signatures in cardiac hypertrophic and atrophic remodeling induced by changes in hemodynamic load.

Ali El-Armouche; Alexander P. Schwoerer; Christiane Neuber; Julius Emmons; Daniel Biermann; Thomas Christalla; Adam Grundhoff; Thomas Eschenhagen; Wolfram-Hubertus Zimmermann; Heimo Ehmke

Background Mechanical overload leads to cardiac hypertrophy and mechanical unloading to cardiac atrophy. Both conditions produce similar transcriptional changes including a re-expression of fetal genes, despite obvious differences in phenotype. MicroRNAs (miRNAs) are discussed as superordinate regulators of global gene networks acting mainly at the translational level. Here, we hypothesized that defined sets of miRNAs may determine the direction of cardiomyocyte plasticity responses. Methodology/Principal Findings We employed ascending aortic stenosis (AS) and heterotopic heart transplantation (HTX) in syngenic Lewis rats to induce mechanical overloading and unloading, respectively. Heart weight was 26±3% higher in AS (n = 7) and 33±2% lower in HTX (n = 7) as compared to sham-operated (n = 6) and healthy controls (n = 7). Small RNAs were enriched from the left ventricles and subjected to quantitative stem-loop specific RT-PCR targeting a panel of 351 miRNAs. In total, 153 miRNAs could be unambiguously detected. Out of 72 miRNAs previously implicated in the cardiovascular system, 40 miRNAs were regulated in AS and/or HTX. Overall, HTX displayed a slightly broader activation pattern for moderately regulated miRNAs. Surprisingly, however, the regulation of individual miRNA expression was strikingly similar in direction and amplitude in AS and HTX with no miRNA being regulated in opposite direction. In contrast, fetal hearts from Lewis rats at embryonic day 18 exhibited an entirely different miRNA expression pattern. Conclusions Taken together, our findings demonstrate that opposite changes in cardiac workload induce a common miRNA expression pattern which is markedly different from the fetal miRNA expression pattern. The direction of postnatal adaptive cardiac growth does, therefore, not appear to be determined at the level of single miRNAs or a specific set of miRNAs. Moreover, miRNAs themselves are not reprogrammed to a fetal program in response to changes in hemodynamic load.


Journal of Molecular and Cellular Cardiology | 2008

Mechanical unloading of the rat heart involves marked changes in the protein kinase–phosphatase balance

Alexander P. Schwoerer; Christiane Neuber; Ariane Schmechel; Ivan Melnychenko; Giulia Mearini; Peter Boknik; Uwe Kirchhefer; Wilhelm Schmitz; Heimo Ehmke; Thomas Eschenhagen; Ali El-Armouche

Mechanical unloading of failing hearts by left ventricular (LV) assist devices is regularly used as a bridge to transplantation and may lead to symptomatic improvement. The latter has been associated with altered phosphorylation of cardiac regulatory proteins, but the underlying mechanisms remained unknown. Here, we tested whether cardiac unloading alters protein phosphorylation by affecting the corresponding kinase-phosphatase balance. Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation in rats for two weeks (n=8). Native in situ hearts from the recipient animals were used as controls (n=8). The steady-state protein kinase A (PKA) and/or Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) phosphorylation levels of phospholamban (PLB, Ser(16) and Thr(17)) and troponin I (TnI, Ser(23/24)) were decreased by 40-60% in unloaded hearts. Consistently, in these hearts PKA activity was decreased by approximately 80% and the activity of protein phosphatase 1 and 2A was increased by 50% and 90%, respectively. In contrast, CaMKII activity was approximately 60% higher, which may serve as a partial compensation. These data indicate that unloading shifts the kinase-phosphatase balance towards net dephosphorylation of PLB and TnI. This shift may also contribute to the reduction in phosphorylation levels of cardiac phosphoproteins observed in diseased human hearts after LVAD.


Nature Protocols | 2017

Differentiation of cardiomyocytes and generation of human engineered heart tissue

Kaja Breckwoldt; David Letuffe-Brenière; Ingra Mannhardt; Thomas Schulze; Bärbel Ulmer; Tessa Werner; Anika Benzin; Birgit Klampe; Marina C Reinsch; Sandra Laufer; Aya Shibamiya; Maksymilian Prondzynski; Giulia Mearini; Dennis Schade; Sigrid Fuchs; Christiane Neuber; Elisabeth Krämer; Umber Saleem; Mirja L. Schulze; Marita L Rodriguez; Thomas Eschenhagen; Arne Hansen

Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)—in a strip format—that generate force under auxotonic stretch conditions. 10–15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.


Scientific Reports | 2017

Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density

Marc D. Lemoine; Ingra Mannhardt; Kaja Breckwoldt; Maksymilian Prondzynski; Frederik Flenner; Bärbel Ulmer; Marc N. Hirt; Christiane Neuber; András Horváth; Benjamin Kloth; Hermann Reichenspurner; Stephan Willems; Arne Hansen; Thomas Eschenhagen; Torsten Christ

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising tool for drug testing and modelling genetic disorders. Abnormally low upstroke velocity is a current limitation. Here we investigated the use of 3D engineered heart tissue (EHT) as a culture method with greater resemblance to human heart tissue in comparison to standard technique of 2D monolayer (ML) format. INa was measured in ML or EHT using the standard patch-clamp technique. INa density was ~1.8 fold larger in EHT (−18.5 ± 1.9 pA/pF; n = 17) than in ML (−10.3 ± 1.2 pA/pF; n = 23; p < 0.001), approaching densities reported for human CM. Inactivation kinetics, voltage dependency of steady-state inactivation and activation of INa did not differ between EHT and ML and were similar to previously reported values for human CM. Action potential recordings with sharp microelectrodes showed similar upstroke velocities in EHT (219 ± 15 V/s, n = 13) and human left ventricle tissue (LV, 253 ± 7 V/s, n = 25). EHT showed a greater resemblance to LV in CM morphology and subcellular NaV1.5 distribution. INa in hiPSC-CM showed similar biophysical properties as in human CM. The EHT format promotes INa density and action potential upstroke velocity of hiPSC-CM towards adult values, indicating its usefulness as a model for excitability of human cardiac tissue.


PLOS ONE | 2014

Guanabenz Interferes with ER Stress and Exerts Protective Effects in Cardiac Myocytes

Christiane Neuber; June Uebeler; Thomas Schulze; Hannieh Sotoud; Ali El-Armouche; Thomas Eschenhagen

Endoplasmic reticulum (ER) stress has been implicated in a variety of cardiovascular diseases. During ER stress, disruption of the complex of protein phosphatase 1 regulatory subunit 15A and catalytic subunit of protein phosphatase 1 by the small molecule guanabenz (antihypertensive, α2-adrenoceptor agonist) and subsequent inhibition of stress-induced dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in prolonged eIF2α phosphorylation, inhibition of protein synthesis and protection from ER stress. In this study we assessed whether guanabenz protects against ER stress in cardiac myocytes and affects the function of 3 dimensional engineered heart tissue (EHT). We utilized neonatal rat cardiac myocytes for the assessment of cell viability and activation of ER stress-signalling pathways and EHT for functional analysis. (i) Tunicamycin induced ER stress as measured by increased mRNA and protein levels of glucose-regulated protein 78 kDa, P-eIF2α, activating transcription factor 4, C/EBP homologous protein, and cell death. (ii) Guanabenz had no measurable effect alone, but antagonized the effects of tunicamycin on ER stress markers. (iii) Tunicamycin and other known inducers of ER stress (hydrogen peroxide, doxorubicin, thapsigargin) induced cardiac myocyte death, and this was antagonized by guanabenz in a concentration- and time-dependent manner. (iv) ER stressors also induced acute or delayed contractile dysfunction in spontaneously beating EHTs and this was, with the notable exception of relaxation deficits under thapsigargin, not significantly affected by guanabenz. The data confirm that guanabenz interferes with ER stress-signalling and has protective effects on cell survival. Data show for the first time that this concept extends to cardiac myocytes. The modest protection in EHTs points to more complex mechanisms of force regulation in intact functional heart muscle.


Journal of Pharmacology and Experimental Therapeutics | 2014

Paradoxical Effects on Force Generation after Efficient β1-Adrenoceptor Knockdown in Reconstituted Heart Tissue

Christiane Neuber; Oliver Müller; Felix C. Hansen; Alexandra Eder; Anika Witten; Frank Rühle; Monika Stoll; Hugo A. Katus; Thomas Eschenhagen; Ali El-Armouche

Stimulation of myocardial β1-adrenoceptors (AR) is a major mechanism that increases cardiac function. We investigated the functional consequences of genetic β1-AR knockdown in three-dimensional engineered heart tissue (EHT). For β1-AR knockdown, short interfering RNA (siRNA) sequences targeting specifically the β1-AR (shB1) and a scrambled control (shCTR) were subcloned into a recombinant adeno-associated virus (AAV)–short hairpin RNA (shRNA) expression system. Transduction efficiency was ∼100%, and radioligand binding revealed 70% lower β1-AR density in AAV6-shB1–transduced EHTs. Force measurements, performed over the culture period of 14 days, showed paradoxically higher force generation in AAV6-shB1 compared with shCTR under basal (0.19 ± 0.01 versus 0.13 ± 0.01 mN) and after β-AR-stimulated conditions with isoprenaline (Δfractional shortening: 72 ± 5% versus 34 ± 4%). Large scale gene expression analysis revealed that AAV6-shCTR compared with nontransduced EHTs showed only few differentially regulated genes (<20), whereas AAV6-shB1 induced marked changes in gene expression (>250 genes), indicating that β1-AR knockdown itself determines the outcome. None of the regulated genes pointed to obvious off-target effects to explain higher force generation. Moreover, compensational regulation of β2-AR signaling or changes in prominent β1-AR downstream targets could be ruled out. In summary, we show paradoxically higher force generation and isoprenaline responses after efficient β1-AR knockdown in EHTs. Our findings 1) reveal an unexpected layer of complexity in gene regulation after specific β1-AR knockdown rather than unspecific dysregulations through transcriptional interference, 2) challenge classic assumptions on the role of cardiac β1-AR, and 3) may open up new avenues for β-AR loss-of-function research in vivo.

Collaboration


Dive into the Christiane Neuber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali El-Armouche

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge