Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaja Breckwoldt is active.

Publication


Featured researches published by Kaja Breckwoldt.


Stem cell reports | 2016

Human Engineered Heart Tissue: Analysis of Contractile Force

Ingra Mannhardt; Kaja Breckwoldt; David Letuffe-Brenière; Sebastian Schaaf; Herbert Schulz; Christiane Neuber; Anika Benzin; Tessa Werner; Alexandra Eder; Thomas Schulze; Birgit Klampe; Torsten Christ; Marc N. Hirt; Norbert Huebner; Alessandra Moretti; Thomas Eschenhagen; Arne Hansen

Summary Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT) from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histologically and functionally. HiPSC-CM in EHTs showed well-developed sarcomeric organization and alignment, and frequent mitochondria. Systematic contractility analysis (26 concentration-response curves) reveals that EHTs replicated canonical response to physiological and pharmacological regulators of inotropy, membrane- and calcium-clock mediators of pacemaking, modulators of ion-channel currents, and proarrhythmic compounds with unprecedented precision. The analysis demonstrates a high degree of similarity between hiPSC-CM in EHT format and native human heart tissue, indicating that human EHTs are useful for preclinical drug testing and disease modeling.


Journal of the American College of Cardiology | 2015

Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization

Jan Fiedler; Kaja Breckwoldt; Christian W. Remmele; Dorothee Hartmann; Marcus Dittrich; Angelika Pfanne; Annette Just; Ke Xiao; Meik Kunz; Tobias Müller; Arne Hansen; Robert Geffers; Thomas Dandekar; Thomas Eschenhagen; Thomas Thum

Background Long noncoding ribonucleic acids (lncRNAs) are a subclass of regulatory noncoding ribonucleic acids for which expression and function in human endothelial cells and angiogenic processes is not well studied. Objectives The authors discovered hypoxia-sensitive human lncRNAs via next-generation ribonucleic acid sequencing and microarray approaches. To address their functional importance in angiogenic processes, several endothelial lncRNAs were characterized for their angiogenic characteristics in vitro and ex vivo. Methods Ribonucleic acid sequencing and microarray-derived data showed specific endothelial lncRNA expression changes after hypoxia. Validation experiments confirmed strong hypoxia-dependent activation of 2 intergenic lncRNAs: LINC00323 and MIR503HG. Results Silencing of these lncRNA transcripts led to angiogenic defects, including repression of growth factor signaling and/or the key endothelial transcription factor GATA2. Endothelial loss of these hypoxia-driven lncRNAs impaired cell-cycle control and inhibited capillary formation. The potential clinical importance of these endothelial lncRNAs to vascular structural integrity was demonstrated in an ex vivo model of human induced pluripotent stem cell–based engineered heart tissue. Conclusions The authors report an expression atlas of human hypoxia-sensitive lncRNAs and identified 2 lncRNAs with important functions to sustain endothelial cell biology. LncRNAs hold great promise to serve as important future therapeutic targets of cardiovascular disease.


Science Translational Medicine | 2016

Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells

Florian Weinberger; Kaja Breckwoldt; S. Pecha; Allen Kelly; Birgit Geertz; Jutta Starbatty; Timur Yorgan; Kai-Hung Cheng; Katrin Lessmann; Tomas Stølen; Marielle Scherrer-Crosbie; Godfrey L. Smith; Hermann Reichenspurner; Arne Hansen; Thomas Eschenhagen

Human engineered heart tissue derived from induced pluripotent stem cells improves cardiac function in guinea pigs. A patch for a broken heart A heart attack destroys cardiac muscle, resulting in a fibrotic scar. Weinberger et al. created a living patch for injured hearts using endothelial and cardiac cells grown from human induced pluripotent stem cells. These three-dimensional strips were placed over injured areas of guinea pig hearts; 28 days later, the injured area was partly remuscularized, and the heart pumped ~30% better than just after the injury. The grafts also contained new blood vessels and, in some cases, were electrically coupled to the healthy parts of the heart. These human heart patches may one day help patients recover cardiac function after a heart attack. Myocardial injury results in a loss of contractile tissue mass that, in the absence of efficient regeneration, is essentially irreversible. Transplantation of human pluripotent stem cell–derived cardiomyocytes has beneficial but variable effects. We created human engineered heart tissue (hEHT) strips from human induced pluripotent stem cell (hiPSC)–derived cardiomyocytes and hiPSC-derived endothelial cells. The hEHTs were transplanted onto large defects (22% of the left ventricular wall, 35% decline in left ventricular function) of guinea pig hearts 7 days after cryoinjury, and the results were compared with those obtained with human endothelial cell patches (hEETs) or cell-free patches. Twenty-eight days after transplantation, the hearts repaired with hEHT strips exhibited, within the scar, human heart muscle grafts, which had remuscularized 12% of the infarct area. These grafts showed cardiomyocyte proliferation, vascularization, and evidence for electrical coupling to the intact heart tissue in a subset of engrafted hearts. hEHT strips improved left ventricular function by 31% compared to that before implantation, whereas the hEET or cell-free patches had no effect. Together, our study demonstrates that three-dimensional human heart muscle constructs can repair the injured heart.


Nature Protocols | 2017

Differentiation of cardiomyocytes and generation of human engineered heart tissue

Kaja Breckwoldt; David Letuffe-Brenière; Ingra Mannhardt; Thomas Schulze; Bärbel Ulmer; Tessa Werner; Anika Benzin; Birgit Klampe; Marina C Reinsch; Sandra Laufer; Aya Shibamiya; Maksymilian Prondzynski; Giulia Mearini; Dennis Schade; Sigrid Fuchs; Christiane Neuber; Elisabeth Krämer; Umber Saleem; Mirja L. Schulze; Marita L Rodriguez; Thomas Eschenhagen; Arne Hansen

Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)—in a strip format—that generate force under auxotonic stretch conditions. 10–15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.


Scientific Reports | 2017

Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density

Marc D. Lemoine; Ingra Mannhardt; Kaja Breckwoldt; Maksymilian Prondzynski; Frederik Flenner; Bärbel Ulmer; Marc N. Hirt; Christiane Neuber; András Horváth; Benjamin Kloth; Hermann Reichenspurner; Stephan Willems; Arne Hansen; Thomas Eschenhagen; Torsten Christ

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising tool for drug testing and modelling genetic disorders. Abnormally low upstroke velocity is a current limitation. Here we investigated the use of 3D engineered heart tissue (EHT) as a culture method with greater resemblance to human heart tissue in comparison to standard technique of 2D monolayer (ML) format. INa was measured in ML or EHT using the standard patch-clamp technique. INa density was ~1.8 fold larger in EHT (−18.5 ± 1.9 pA/pF; n = 17) than in ML (−10.3 ± 1.2 pA/pF; n = 23; p < 0.001), approaching densities reported for human CM. Inactivation kinetics, voltage dependency of steady-state inactivation and activation of INa did not differ between EHT and ML and were similar to previously reported values for human CM. Action potential recordings with sharp microelectrodes showed similar upstroke velocities in EHT (219 ± 15 V/s, n = 13) and human left ventricle tissue (LV, 253 ± 7 V/s, n = 25). EHT showed a greater resemblance to LV in CM morphology and subcellular NaV1.5 distribution. INa in hiPSC-CM showed similar biophysical properties as in human CM. The EHT format promotes INa density and action potential upstroke velocity of hiPSC-CM towards adult values, indicating its usefulness as a model for excitability of human cardiac tissue.


Frontiers in Pharmacology | 2016

Ca2+-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions

Ahmet Umur Uzun; Ingra Mannhardt; Kaja Breckwoldt; András Horváth; Silke S. Johannsen; Arne Hansen; Thomas Eschenhagen; Torsten Christ

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca2+-current (ICa,L) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF (n = 289), EHT 45 ± 1 pF (n = 460), atrial CM 87 ± 3 pF (n = 196), ventricular CM 126 ± 8 pF (n = 50)]. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10 ± 1 pA/pF (n = 207) for ML and 12 ± 1 pA/pF (n = 361) for EHT and was larger than in adult CM [7 ± 1 pA/pF (p < 0.05, n = 196) for atrial CM and 6 ± 1 pA/pF (p < 0.05, n = 47) for ventricular CM]. However, ML and EHT showed robust T-type Ca2+-currents (ICa,T). While (−)-Bay K 8644, that activates ICa,L directly, increased ICa,Lto the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (−)-Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (−logEC50: 5.9 and 6.1 for norepinephrine (NE) and epinephrine (Epi), respectively), but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (−logEC50: 5.3 and 5.3 respectively for NE and Epi). Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation.


Stem cell reports | 2018

Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes

András Horváth; Marc D. Lemoine; Alexandra Löser; Ingra Mannhardt; Frederik Flenner; Ahmet Umur Uzun; Christiane Neuber; Kaja Breckwoldt; Arne Hansen; Evaldas Girdauskas; Hermann Reichenspurner; Stephan Willems; Norbert Jost; Erich Wettwer; Thomas Eschenhagen; Torsten Christ

Summary Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (IK1). Here, IK1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. IK1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. IK1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and IK,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that IK1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs.


Cardiovascular Research | 2014

287Human induced pluripotent stem cells for tissue-engineered cardiac repair

Kaja Breckwoldt; Florian Weinberger; S. Pecha; Birgit Geertz; Jutta Starbatty; Arne Hansen; Thomas Eschenhagen


Journal of Heart and Lung Transplantation | 2017

(221) – Implantation of Spontaneously Beating Human iPS Cell-Derived Engineered Heart Tissue Does Not Provoke Ventricular Arrhythmias in a Guinea Pig Infarction Model

S. Pecha; Kaja Breckwoldt; M. Roehl; Arne Hansen; A. Schwoerer; H. Ehmke; Hermann Reichenspurner; Thomas Eschenhagen


Journal of Heart and Lung Transplantation | 2016

Electrophysiological Investigations of Human iPS Cell-Derived Engineered Heart Tissue in a Guinea Pig Infarction Model

S. Pecha; Florian Weinberger; Kaja Breckwoldt; Arne Hansen; Hermann Reichenspurner; Thomas Eschenhagen

Collaboration


Dive into the Kaja Breckwoldt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Pecha

University of Hamburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge