Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina K. Reed is active.

Publication


Featured researches published by Christina K. Reed.


Experimental Lung Research | 1998

Inflammatory and Epithelial Responses in Mouse Strains That Differ in Sensitivity to Hyperoxic Injury

Carl J. Johnston; Barry R. Stripp; Bruno Piedbeouf; Terry W. Wright; Greg W. Mango; Christina K. Reed; Jacob N. Finkelstein

The pulmonary response to various toxicants including bleomycin, ozone, ionizing radiation, and hyperoxia is highly variable among mouse strains. The current study tests the hypothesis that at a similar stage of injury, regardless of strain, expression of inflammatory cytokine and epithelial marker genes would be similar, indicating a common pathway of injury progression. Three strains of mice, C57B1/6J, 129/J, and C3H/HeJ, ranging from sensitive to resistant, were exposed to > 95% O2 for varying times. Ribonuclease protection was used to quantify changes in cytokine mRNA. Despite differences in the kinetics, each strain demonstrated similar hyperoxia-induced changes in the abundance of interleukin (IL)-6, IL-1 beta, IL-3, and tumor neucrosis factor (TNF)-alpha. For each strain, death was accompanied by similar increases in cytokine mRNAs above steady-state control levels. Other inflammatory cytokines, including IL-1 alpha, IL-4, and interferon (IFN)-gamma, were unaltered in all strains at all times. In situ hybridization analysis of the epithelial markers, surfactant protein B (SPB), and clara cell secretory protein (CCSP) at the time of proinflammatory induction showed a similar pattern of expression in all strains. Increased SPB was detected in bronchiolar epithelium, while the number of type II cells expressing this message declined. Both the number of cells expressing CCSP as well as abundance per cell declined. These results suggest that although differences in acute sensitivity to hyperoxia exist between mouse strains, once initiated, acute epithelial cell injury and associated inflammatory changes follow the same pattern in all strains.


Experimental Lung Research | 1999

INFLAMMATORY AND ANTIOXIDANT GENE EXPRESSION IN C57BL/6J MICE AFTER LETHAL AND SUBLETHAL OZONE EXPOSURES

Carl J. Johnston; Barry R. Stripp; Susan D. Reynolds; Nelly E. Avissar; Christina K. Reed; Jacob N. Finkelstein

Ozone (O3) is a highly reactive and toxic oxidant pollutant. The objective of this study is to compare cytokine, chemokine, and metallothionein (Mt) changes elicited by lethal and sublethal exposure to ozone in a genetically sensitive strain of mice. Eight-week-old C57BL/6J mice were exposed to 0.3 ppm ozone for 0, 24, or 96 hours; 1.0 ppm ozone for 0, 1, 2, or 4 hours; or 2.5 ppm ozone for 0, 2, 4, or 24 hours. After 24 hours of exposure to 0.3 ppm ozone, increases in mRNA abundance were detected for messages encoding eotaxin, macrophage inflammatory protein (MIP)-1 alpha, and MIP-2. These increases persisted through 96 hours of exposure. At this time point messages encoding lymphotactin (Ltn) and metallothionein were also increased. After 4 hours of 1.0 ppm ozone exposure, increases in mRNA abundance were detected for messages encoding eotaxin, MIP-1 alpha, MIP-2, and interleukin (IL)-6. Mt mRNA abundance was increased after 1 hour of exposure and persisted through 4 hours, although the magnitude of the alterations increased. After 2 hours of 2.5 ppm ozone exposure, increases were detected for messages encoding eotaxin, MIP-1 alpha, MIP-2, IL-6, and Mt. These increases persisted through 4 hours of exposure. Lung weights of mice exposed to 2.5 ppm ozone for 24 hours were approximately 2 times greater than air-exposed mice. At this dose lethality occurred by 36 hours. Increased mRNAs for eotaxin, MIP-1 alpha, MIP-2, and Mt were to a higher magnitude than were detected after 2 and 4 hours of exposure. Messages encoding IL-12, IL-10, interferon (IFN)-gamma, IL-1 alpha, IL-1 beta, and IL-1Ra were unaltered at all time points and doses examined. Our results demonstrate dose- and time-dependent changes in chemokine, cytokine, and Mt mRNA abundance and that early acute changes may be predictive of subacute and chronic responses to ozone.


Experimental Lung Research | 1998

Chemokine mRNA Alterations in Newborn and Adult Mouse Lung During Acute Hyperoxia

Carl T. D'Angio; Carl J. Johnston; Terry W. Wright; Christina K. Reed; Jacob N. Finkelstein

Chemokines play a major role in the recruitment of inflammatory cells during acute lung injury. Adult and newborn C57BL/6 mice were exposed to > 95% oxygen for up to 72 hours and 7 days, respectively. Chemokine mRNA abundance was evaluated in whole lung RNA by ribonuclease protection assay and in tissue sections by in situ hybridization. Monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-2, and interferon gamma-induced protein (IP)-10 mRNAs were present in whole newborn lung by 4 days of hyperoxia and were markedly elevated by 7 days. Levels of mRNA for MCP-1, MIP-1 alpha, and MIP-2 were elevated to a lesser extent by 72 hours of hyperoxia in adults. MCP-1 mRNA abundance was moderately elevated in scattered areas of perivascular tissue, peribronchiolar tissue, and the alveolar interstitium in 4-day hyperoxic newborns and markedly upregulated diffusely throughout the peripheral airspaces in 7-day hyperoxic newborns. MCP-1 mRNA abundance was limited to scattered perivascular areas and airspaces in 72-hour hyperoxic adults. These differences in the intensity, timing, and distribution of chemokine mRNA abundance between adult and newborn mice may help to explain the marked differences in their susceptibility to oxygen injury.


Radiation Research | 2010

Early Alterations in Cytokine Expression in Adult Compared to Developing Lung in Mice after Radiation Exposure

Carl J. Johnston; Eric Hernady; Christina K. Reed; Sally W. Thurston; Jacob N. Finkelstein; Jacqueline P. Williams

Abstract To assess early changes in the lung after low-dose radiation exposure that may serve as targets for mitigation of lung injury in the aftermath of a terrorist event, we analyzed cytokine expression after irradiation. Adult mice were studied after whole-lung or total-body irradiation. Mouse pups of different ages were also investigated after total-body irradiation. mRNA abundance was analyzed in tissue and plasma, and pathological changes were assessed. In lung tissue, dose-related changes were seen in IL1B, IL1R2 and CXCR2 mRNA expression at 1 and 6 h after irradiation, concurrent with increases in plasma protein levels of KC/CXCL1 and IL6. However, in the pups, changes in IL1 abundance were not detected until 28 days of age, coincident with the end of postnatal lung growth, although apoptosis was detected at all ages. In conclusion, although cytokines were expressed after low doses of radiation, their role in the progression of tissue response is yet to be determined. They may be candidates for use in marker-based biodosimetry. However, the lack of cytokine induction in early life suggests that different end points (and mitigating treatments) may be required for children.


Inhalation Toxicology | 2000

ANTIOXIDANT AND INFLAMMATORY RESPONSE AFTER ACUTE NITROGEN DIOXIDE AND OZONE EXPOSURES IN C57Bl/6 MICE

Carl J. Johnston; Christina K. Reed; Nelly E. Avissar; Robert Gelein; Jacob N. Finkelstein

Ozone (O3) and nitrogen dioxide (NO2) are highly reactive and toxic oxidant pollutants. The objective of this study is to compare chemokine, cytokine, and antioxidant changes elicited by acute exposures of O3 and NO2 in a genetically sensitive mouse. Eight-weekold C57Bl/6J mice were exposed to 1 or 2.5 ppm ozone or 15 or 30 ppm NO2 for 4 or 24 h. Changes in mRNA abundance in lung were assayed by slot blot and ribonuclease protection assay (RPA). Messages encoding metallothionein (Mt), heme oxygenase I (HO-I), and inducible nitric oxide synthase (iNOS) demonstrated increased message abundance after 4 and 24 h of exposure to either O3 or NO2. Furthermore, increases in message abundance were of a similar magnitude for O3 and NO2. Messages encoding eotaxin, macrophage inflammatory protein (MIP)-1 a, and MIP-2 were elevated after 4 and 24 h of exposure to 1 ppm ozone. Interleukin-6 was elevated after 4 h of exposure to ozone. After 4 h of 2.5 ppm ozone exposure, increased mRNAs of eotaxin, MIP-1 a, MIP-2, Mt, HO-I, and iNOS were elevated to a higher magnitude than were detected after 1 ppm ozone. Monocyte chemoattractant protein (MCP-1) was elevated following 15 ppm NO2 exposure. After 4 h of 30 ppm NO2 exposure, messages encoding eotaxin, MIP-1 a, MIP-2, and MCP-1 were elevated to levels similar to those detected after ozone exposure. Our results demonstrate a similar antioxidant and chemokine response during both O3 and NO2 exposure. Induction of these messages is associated with the duration and concentration of exposure. These studies suggest that these gases exert toxic action through a similar mechanism.Ozone (O(3)) and nitrogen dioxide (NO(2)) are highly reactive and toxic oxidant pollutants. The objective of this study is to compare chemokine, cytokine, and antioxidant changes elicited by acute exposures of O(3) and NO(2) in a genetically sensitive mouse. Eight-week-old C57Bl/6J mice were exposed to 1 or 2.5 ppm ozone or 15 or 30 ppm NO(2) for 4 or 24 h. Changes in mRNA abundance in lung were assayed by slot blot and ribonuclease protection assay (RPA). Messages encoding metallothionein (Mt), heme oxygenase I (HO-I), and inducible nitric oxide synthase (iNOS) demonstrated increased message abundance after 4 and 24 h of exposure to either O(3) or NO(2). Furthermore, increases in message abundance were of a similar magnitude for O(3) and NO(2). Messages encoding eotaxin, macrophage inflammatory protein (MIP)-1alpha, and MIP-2 were elevated after 4 and 24 h of exposure to 1 ppm ozone. Interleukin-6 was elevated after 4 h of exposure to ozone. After 4 h of 2.5 ppm ozone exposure, increased mRNAs of eotaxin, MIP-1alpha, MIP-2, Mt, HO-I, and iNOS were elevated to a higher magnitude than were detected after 1 ppm ozone. Monocyte chemoattractant protein (MCP-1) was elevated following 15 ppm NO(2) exposure. After 4 h of 30 ppm NO(2) exposure, messages encoding eotaxin, MIP-1alpha, MIP-2, and MCP-1 were elevated to levels similar to those detected after ozone exposure. Our results demonstrate a similar antioxidant and chemokine response during both O(3) and NO(2) exposure. Induction of these messages is associated with the duration and concentration of exposure. These studies suggest that these gases exert toxic action through a similar mechanism.


Radiation Research | 2013

Exacerbation of Lung Radiation Injury by Viral Infection: The Role of Clara Cells and Clara Cell Secretory Protein

Casey M. Manning; Carl J. Johnston; Eric Hernady; Jen-nie Miller; Christina K. Reed; B. Paige Lawrence; Jacqueline P. Williams; Jacob N. Finkelstein

Viral infections have been associated with exacerbation of disease in human cases of idiopathic pulmonary fibrosis. Since pulmonary fibrosis is a common outcome after irradiation to the lung, we hypothesized that viral infection after radiation exposure would exacerbate radiation-induced lung injury. Epithelial injury, a frequent outcome after infection, has been hypothesized to contribute to the pathogenesis of pulmonary fibrosis and bronchiolar epithelial Clara cells participate in epithelial repair. Therefore, it was further hypothesized that altered responses after irradiation involve the bronchiolar epithelial Clara cells. C57BL/6J or CCSP–/– mice were irradiated with 0 (sham), 5, 10 or 15 Gy to the whole thorax. At ten weeks post-irradiation, animals were mock infected or infected with influenza A virus and body weight and survival were monitored. Pulmonary function was assessed by whole-body plethysmography. The Clara cell markers, CCSP and Cyp2f2, were measured in the lung by qRT-PCR, and protein expression was visualized in the lung by immunofluorescence. Following pulmonary function tests, mice were sacrificed and tissues were collected for pathological analysis. In 15 Gy irradiated animals infected with influenza A virus, accelerated respiratory rates, reduced pulmonary function, and exacerbated lung pathology occurred earlier post-irradiation than previously observed after irradiation alone, suggesting infection accelerates the development of radiation injury. After irradiation alone, CCSP and Cyp2f2 mRNA levels were reduced, correlating with reductions in the number of Clara cells lining the airways. When combined with infection, these markers further declined and an apparent delay in recovery of mRNA expression was observed, suggesting that radiation injury leads to a chronic reduction in the number of Clara cells that may potentiate the epithelial injury observed after influenza A virus infection. This novel finding may have considerable therapeutic implications with respect to both thoracic tumor patients and recipients of bone marrow transplants.


International Journal of Radiation Oncology Biology Physics | 2013

Lung Irradiation Increases Mortality After Influenza A Virus Challenge Occurring Late After Exposure

Casey M. Manning; Carl J. Johnston; Christina K. Reed; B. Paige Lawrence; Jacqueline P. Williams; Jacob N. Finkelstein

PURPOSE To address whether irradiation-induced changes in the lung environment alter responses to a viral challenge delivered late after exposure but before the appearance of late lung radiation injury. METHODS AND MATERIALS C57BL/6J mice received either lung alone or combined lung and whole-body irradiation (0-15 Gy). At 10 weeks after irradiation, animals were infected with 120 HAU influenza virus strain A/HKx31. Innate and adaptive immune cell recruitment was determined using flow cytometry. Cytokine and chemokine production and protein leakage into the lung after infection were assessed. RESULTS Prior irradiation led to a dose-dependent failure to regain body weight after infection and exacerbated mortality, but it did not affect virus-specific immune responses or virus clearance. Surviving irradiated animals displayed a persistent increase in total protein in bronchoalveolar lavage fluid and edema. CONCLUSIONS Lung irradiation increased susceptibility to death after infection with influenza virus and impaired the ability to complete recovery. This altered response does not seem to be due to a radiation effect on the immune response, but it may possibly be an effect on epithelial repair.


Radiation Research | 2015

Examining the Effects of External or Internal Radiation Exposure of Juvenile Mice on Late Morbidity after Infection with Influenza A

Ravi S. Misra; Carl J. Johnston; Angela M. Groves; Marta L. DeDiego; Joe St. Martin; Christina K. Reed; Eric Hernady; Jen-nie Miller; Tanzy Love; Jacob N. Finkelstein; Jacqueline P. Williams

A number of investigators have suggested that exposure to low-dose radiation may pose a potentially serious health risk. However, the majority of these studies have focused on the short-term rather than long-term effects of exposure to fixed source radiation, and few have examined the effects of internal contamination. Additionally, very few studies have focused on exposure in juveniles, when organs are still developing and could be more sensitive to the toxic effects of radiation. To specifically address whether early-life radiation injury may affect long-term immune competence, we studied 14-day-old juvenile pups that were either 5 Gy total-body irradiated or injected internally with 50 μCi soluble 137Cs, then infected with influenza A virus at 26 weeks after exposure. After influenza infection, all groups demonstrated immediate weight loss. We found that externally irradiated, infected animals failed to recover weight relative to age-matched infected controls, but internally 137Cs contaminated and infected animals had a weight recovery with a similar rate and degree as controls. Externally and internally irradiated mice demonstrated reduced levels of club cell secretory protein (CCSP) message in their lungs after influenza infection. The externally irradiated group did not recover CCSP expression even at the two-week time point after infection. Although the antibody response and viral titers did not appear to be affected by either radiation modality, there was a slight increase in monocyte chemoattractant protein (MCP)-1 expression in the lungs of externally irradiated animals 14 days after influenza infection, with increased cellular infiltration present. Notably, an increase in the number of regulatory T cells was seen in the mediastinal lymph nodes of irradiated mice relative to uninfected mice. These data confirm the hypothesis that early-life irradiation may have long-term consequences on the immune system, leading to an altered antiviral response.


American Journal of Respiratory Cell and Molecular Biology | 2001

The Cyclin-Dependent Kinase Inhibitor p21 Protects the Lung from Oxidative Stress

Michael A. O'Reilly; Rhonda J. Staversky; Richard H. Watkins; Christina K. Reed; Karen L. de Mesy Jensen; Jacob N. Finkelstein; Peter C. Keng


Experimental Lung Research | 1997

Comparison of Adult and Newborn Pulmonary Cytokine Mrna Expression After Hyperoxia

Carl J. Johnston; Terry W. Wright; Christina K. Reed; Jacob N. Finkelstein

Collaboration


Dive into the Christina K. Reed's collaboration.

Top Co-Authors

Avatar

Jacob N. Finkelstein

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Carl J. Johnston

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eric Hernady

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jacqueline P. Williams

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Casey M. Manning

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nelly E. Avissar

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge